
MEASUREMENT INSTRUMENTS

DC 5009/DC 509 Universal Counter/Timers

- 135 MHz Both A and B Channels
- 10 ns Single-Shot Resolution
- 8-Digit Display
- 5 ps Resolution, with Averaging
- Reciprocal-Frequency Measurement; Period; Width; Time A – B; Events B During A; Totalize; Ratio; Time Manual; Arming
- Auto or Selected Averaging to 10% in All Modes
- Duty Cycle Independent Autotrigger
- Shaped A and B Channel Outputs
- Probe Compensation
- High Stability Oven Time Base

*The DC 5009 complies with IEEE Standard 488.1-1987 and with Tektronix Standard Codes and Formats.

DC 5009/DC 509

The DC 5009/DC 509 single-width Universal Counter/ Timers provide all of the measurement functions of the higher performance DC 5010/DC 510 except rise time/ fall time, null, and totalize $A\pm B$.

The powerful reciprocal-frequency measurement technique allows up to eight digits of resolution of low-frequency signals in one second or less of measurement time. The DC 5009/DC 509 has the same automatic averaging feature as the DC 5010/DC 510; selected averaging of up to 10⁸ events provides usable time-interval resolution of 5 ps.

The TM 5000 rear-interfacing capability allows the DP 501 to be controlled over the GPIB through the DC 5009. The DP 501 extends frequency measurements to 1.3 GHz.

CHARACTERISTICS

CHANNEL A AND B INPUT

Frequency Range -> 0 to ≥ 135 MHz dc coupled; ≤ 10 Hz to ≥ 135 MHz ac coupled.

Sensitivity - ≤ 20 mV RMS (56.6 mV p-p) to ≥100 MHz, 40 mV RMS (113 mV p-p) from 100 MHz to ≥135 MHz, 115 mV p-p at minimum, pulse width of 3 ns.

Attenuation - Selectable 1X, 5X.

Impedance – 1 M Ω ±2% paralleled by \leq 30 pF. **Trigger Level Range** – +3.200 to –3.175 V with 25 mV resolution (X1), +16 to -15.875 V with 125 mV resolution (X5)

Trigger Level Accuracy – ± 15 mV ± 40 μ V/°C referenced to 25°C.

Dynamic Range - 3.2 \leq input voltage \leq +3.2. X1: Vin p-p \leq 3 V; X5: V p-p 15 Vin (for input signal risetime p-p \leq 3 V; X5: V p-p 15 Vin (for input signal risetimes \leq 5 ns).

Autotrigger Frequency Range – Sensitivity ≤ 125 mV p-p x attenuation; ≤ 20 Hz to ≥100 MHz. Range: ±3.2 V x attenuation. Resolution: 25 mV x attenuation.

Independent Controls – Slope ± ,attenuation 1X/5X, Couple ac/dc, Source Internal/External.

Maximum Input Voltage − 1X: \leq 200 V peak; \leq 400 V p-p from dc to 50 kHz, \leq 15 V p-p at 135 MHz. 5X: \leq 200 V peak; \leq 400 V p-p from dc to 5 MHz, \leq 25 V p-p at 135 MHz.

Shaped Out – Shaped replica of signal being measured, aids proper triggering on complex waveforms. Amplitude 0 V to \geq +0.3 V from 50 Ω .

Trigger Level Out – A dc level corresponding to the actual trigger level. Accuracy within ± 10 mV of internal trigger level.

Arming Input – Permits measurements of complex waveforms. A TTL high allows averaging of selected events within a measurement.

FREQUENCY A

Range - ≤100 µHz to ≥135 MHz.

Resolution -

 \pm LSD \pm 1.4 x $\frac{A \text{ Trigger Jitter Error}}{N}$ x (Frequency A)²

Accuracy -

Resolution \pm (Time Base Error x Frequency A).

PERIOD A

Range $- \le 7.40$ ns to ≥ 3.05 hrs.

Resolution -

$$\pm$$
LSD \pm 1.4 x $\frac{A \text{ Trigger Jitter Error}}{N}$

Accuracy – Resolution ± (Time Base Error x Period A).

RATIO B/A

Range – 10^{-7} to 10^{8} (Frequency Range: CH A to ≥ 135 MHz; CH B to ≥ 125 MHz).

Resolution -

 \pm LSD \pm 1.4 x B Trigger Jitter Error $\left(\frac{\text{Frequency B}}{\text{N}}\right)$

Accuracy - Same as Resolution.

TIME A - B

Range $- \le 15$ ns to ≥ 3.05 hrs.

Minimum Dead Time - 15 ns (stop to start).

Resolution -

$$\pm LSD + \frac{1}{\sqrt{N}} \left(\pm A \text{ Trigger Jitter Error} \right)$$

Accuracy – Resolution ±(Time Base Error xTime A-B) + (B Trigger Slew Error-A Trigger Slew Error) ±(Channel Delay Mismatch).

Channel Delay Mismatch — < 2 ns between front panel inputs and < 2 ns between rear interface inputs.

Repetition Rate - < 35 MHz.

EVENTS B DURING A

Range - 10-7 to 108.

Maximum B Frequency - 125 MHz.

Minimum A Pulse Width - 15 ns.

Minimum Time Between A Pulses – 15 ns.

Minimum Time Between "A" Start Edge and First "B" Event - 15 ns.

Resolution -

$$\pm LSD + \frac{Freq. B}{\sqrt{N}} \left(\pm Trig. Jit. Error CH A start edge \right)$$

Accuracy – Resolution + Frequency B (Stop Slew Rate Error – Start Slew Rate Error).

WIDTH A

Range $- \le 15$ ns to ≥ 3.05 hrs.

Minimum Dead Time Between Pulses – 15 ns.

Resolution -

$$\pm LSD + \frac{1}{\sqrt{N}} \left(\pm \text{Start Trigger Jitter Error} \right)$$

Accuracy – Resolution ±(Time Base Error x Width A) + (Stop Slew Rate Error-Start Slew Rate Error) ±5 ns.

MEASUREMENT INSTRUMENTS

TIME MANUAL

Range -0 to 3.05 hrs. May be extended with GPIB. **Resolution** $-\pm$ LSD (100 ms).

Accuracy $-\pm$ Resolution \pm (Time Base Error x Time).

TOTALIZE A

Range – 0 to 1.09 x 1012 counts. Extended with GPIB. **Repetition Rate** \rightarrow 0 to \geq 135 MHz.

RESOLUTION AND ACCURACY: DEFINITIONS

For Trigger Jitter Error and Slew Rate Error definitions, see DC 503A.

N=Number of Events Averaged.

The minimum number of averages is selected by the averages control in decade steps from 1 to 10⁸. At channel A repetition rates above ≈250 Hz, the number of events averaged will be:

N=[Frequency A (Hz) x 4 ms] + Averages.

N=Averages setting (below 250 Hz).

In the Auto mode, the counter measures with a fixed measurement time of about 300 ms.

N=Frequency A (Hz) x 0.3 s. (N is always ≥1).

Time Base Error – The sum of all errors specified for the time base used.

STANDARD HIGH STABILITY TIME BASE Crystai Frequency – 10 MHz.

Temperature Stability $-\pm 2 \times 10^{-7} \text{ O to} + 50^{\circ}\text{C}$ after warm-up.

Warm-up Time $-+2x10^{-7}$ of final frequency in 10 minutes when cold started at 25°C.

Aging Rate – $\leq 1x10^{-8}$ /day at time of shipment, $4x10^{-8}$ /week after 30 days of continuous operation, $1x10^{-6}$ /year after 60 days of continuous operation.

Setability – Adjustable to within $\pm 2 \times 10^{-8}$.

REAR INTERFACE

Inputs – Channel A and Channel B input to 50 MHz (50 Ω impedance, maximum input 3.6 V peak); arming; reset; external time base (1,5, or 10 MHz), prescale.

Outputs – Channel A and Channel B shaped outputs; Channel A and Channel B trigger level outputs; 10 MHz clock; gate out.

OTHER CHARACTERISTICS

Power Consumption – 15 W.

GPIB Data Output Rate – \approx 10 readings/s maximum (DC 5009 only).

DP 501

The DP 501 Digital Prescaler adds 1.3 GHz frequency-counting capability to most counters, though it was designed specifically for use with the DC 503A, DC 509/DC 5009, and the DC 5010/DC 510 Universal Counter/Timers.

The DP 501 is placed in the signal line between the source and the counter's signal input and can be operated in either the Direct or the Prescale mode. The ÷16 prescaling function can

be activated manually, with a front panel pushbutton, or via the GPIB when used with the DC 5009 or DC 5010.

Input sensitivity in the Prescale mode is 20-mV RMS to 1 GHz and 30-mV RMS to 1.3 GHz. A Low-Level indicator alerts the user if the input signal amplitude is too low for error-free counting. An automatic gain-control circuit provides optimum immunity to signal noise in the Prescale mode.

CHARACTERISTICS

PRESCALE MODE INPUT

Frequency Range $- \le 100$ MHz to ≥ 1.3 GHz. Sensitivity - 100 MHz to 1 GHz is ≤ 20 mV RMS (-21 dBm). 1 to 1.3 GHz is ≤ 30 mV RMS (-17 dBm).

Impedance – 50 Ω , ac coupled; vswr \leq 2.2:1. **Output** – Amplitude into 50 Ω is \leq 200 mV, p-p.

Output – Amplitude into 50 Ω is \leq 200 mV, p-p. Unterminated is 2X terminated value.

DIRECT MODE INPUT

(Connected directly to output.)

Frequency Range - 0 to > 350 MHz.

Impedance – Loop through characteristic impedance is 50Ω ; nonterminated capacitance $\approx 20 \text{ pF}$ (no connection to output).

Output – Connected directly to input. < 1 dB insertion loss up to 350 MHz. Powers up in direct mode.

GENERAL

Overload Protection – Prescale: Input disconnects when input signal exceeds + 20 dBm ±5 dBm.

Damage Level – Prescale: Input may be damaged if signal level exceeds + 25 dBm. Direct: 42 V peak maximum. Maximum current is 250 mA.

Input Attenuation — Automatic: Up to 40 dB range. **Low Level Indicator** — Lights when input signal is below that required for error-free counting.

ORDERING INFORMATION

DC 5009 Programmable Universal Counter/Timer Includes: Tip jack to BNC adapter cable (175-3765-01); instrument interfacing guide (070-4612-00); reference guide (070-3560-01); instruction manual (070-3888-00).

DC 509 Universal Counter/Timer Includes: Instruction Manual (070-3464-00).

\$2,450

\$2,250

CONVERSION KIT (DC 509) IEEE Standard 488 Capability – Order 040-0957-05

\$450

OPTIONAL ACCESSORIES
See page 221.

DP 501 Digital Prescaler

- Extends Counter Frequency Measurement Capability to 1.3 GHz
- Compatible with Most TM 500 and TM 5000 Counters
- AGC
- Low-Level Indicator
- GPIB Programmability with DC 5009 and DC 5010

ORDERING INFORMATION

DP 501 Digital Prescaler Includes: Instruction manual (070-4332-00).

\$995