

PM 6685 PM 6685R

Technical Data

Universal Frequency Counter Rubidium Frequency Counter Calibrator

Cal lab performance you can take anywhere

Cal lab performance in the field The PM 6685 frequency counter from Fluke brings cal lab accuracy to field measurements. With 10 digits per second, plus overflow (displays 11th and 12th digits), it delivers high-accuracy measurements instantly. The PM 6685 is easy to use. compact and - most important of all - it has today's smartest input triggering for frequency measurements. The battery option for the PM 6685 maintains oven stability for 20 hours, giving you instant oven performance even after long transportation.

- 300 MHz basic input range; options for 1.3 GHz or 3.0 GHz
- Ultra High Stability Oven: up to 5 x 10⁻⁹ within 10 min
- Battery supply in combination with Ultra High Stability Oven for On-Site calibration
- Displays 10 digits in a second
- Smart AUTO trigger eliminates guesswork, provides errorfree measurements
- Analog Bar Graph displays signal strength and input sensitivity to assist instrument setup and RF tuning applications

- Nulling function lets you use any value as input reference
- Digit blanking function to eliminate distracting or insignificant digits in your readings
- Connect-and-go convenience for testbench and field use Optional IEEE-488 (SCPI) interface

GSM Network operators

Depending on the cellular radio system network operators and the internal procedures and budgets, the calibration requirement can be fulfilled with the following solutions from Fluke.

- PM6685 with the Ultra-High-Stability oven oscillator in the small housing with or without battery supply to check base stations, offering a low initial cost-effective solution (6 month calibration interval for a margin of 3x better than GSM specification)
- PM6685R **Rubidium** Frequency Counter/Calibrator, to check base stations, providing low cost of

ownership, (10 year calibration interval, for a margin of 50x better than GSM specification)

Ultra High Stability Timebase

The new Ultra-High-Stability oven oscillator PM9692 fills the gap between the currently available best crystal oscillators and the Rubidium oscillator. The short warm-up time of 10 min to reach 5 x 10^{-9} of final value makes it the ideal solution for many on-site calibration applications.

The PM9692 oscillator in the smaller housing of the PM6685, provides adequate accuracy to handle the fast-growing need for calibrations of digital cellular telephony systems and other

Frequency Range

0 to 100 MHz

calibration applications, very cost effectively.

PM6685R - Todav's most accurate frequency counter

The PM 6685R from Fluke is the most accurate portable frequency counter on the market. It offers all the functionality of the PM 6685, plus the stability and accuracy of a built-in Rubidium atomic reference.

High stability, high accuracy and short warm-up times make this instrument ideal for highaccuracy calibration procedures outside the cal lab environment, such as in base station transmitters of large telecommunication networks

like GSM.

The short warm-up time means that the PM 6685R is ready for use within minutes after field transport or a change of location inside a building.

Additional features PM 6685R

- High accuracy and short warm-up times: 5 min. to lock $4 \ge 10^{-10}$ within 10 min. Aging 1 x 10^{-9} in 10 year
- Calibrates any application specific frequency
- 10 MHz buffered Rubidium reference output
- 2 year warranty on Rubidium element

Technical Specifications PM 6685 Measuring Functions Input A Refer to table 1 for measurement uncertainty information. Frequency Coupling: Frequency A, C Range Impedance Input A: 10 Hz to 300 MHz Sensitivity 70 MHz to 1.3 GHz (PM 9621) Input C: Sinewave: 100 MHz to 3.0 GHz (PM 9624) Resolution: 10 digits/s measurement time **Burst Frequency A** Frequency Range: 100 Hz to 80 MHz Pulse: PRF Range: up to 1 MHz Pulse Width Range: 0.5 µs to 50 ms, min. 3 periods of Dynamic Ra Manual Tri this signal Burst Frequency C (PM9624) Sensitivity Frequency Range: 100 Hz to 3.0 GHz PRF Range: up to 1 MHz Pulse Width Range: 0.5 µs to 1.5 s, min. 196 cycles in burst Trigger Lev Period A 6 ns to 100 ms Range: Resolution: 10 digits/s measurement time Ratio A/E, C/A Trigger Slo 10^{-7} to 10^{10} Range: Auto Trigg Frequency Range: 10 Hz to 300 MHz Input A: Input E: 10 Hz to 80 MHz 70 MHz to 1.3 GHz (PM 9621) Input C: Frequency 100 MHz to 3.0 GHz (PM 9624) Sensitivity Pulse Width A Signal Mon Range: 6 ns to 10 ms Frequency Range: 50 Hz to 80 MHz Voltage Range: 100 mV p-p to 70V p-p Low Pass I Duty Factor A Range: 0 to 1 Frequency Range: 50 Hz to 80 MHz Damage L Voltage Range: 100 mV p-p to 70V p-p Totalize A Event counting on input A with manual start and stop 0 to 10^{17} Range:

Input and Output Specifications

output spoo	
Pango:	10 Hz to 300 MHz
Range:	AC
e:	$1 \text{ M}\Omega/25 \text{ pF or } 50\Omega, \text{ VSWR} < 2:1$
v:	
	10 mV rms. 10 Hz to 50 MHz
	15 mV rms, 50 MHz to 100 MHz
	20 mV rms, 100 MHz to 150 MHz
	30 mV rms, 150 MHz to 200 MHz
	50 mV rms, 200 MHz to 300 MHz
	50 mV p-p, 3 ns minimum pulse width
Range:	30 mV p-p to 70V p-p
rigger:	
Range:	10 mV rms to 10V rms, variable
	in 3 dB steps, indicated on a
	bar graph
vel:	Selectable for optimum
	triggering on waveforms with
	duty factors <0.25, 0.25 to 0.75 and >0.75
	Positive or negative
ope: ger:	Automatic setting of input
goi.	signal conditioning circuits for
	optimum triggering on different
	amplitudes and waveforms
r:	Minimum 50 Hz
Range:	10 mV rms to 25V rms
nitor:	A bar graph displays actual
	input signal level in 3 dB steps,
	10mV rms to 10V rms
Filter:	100 kHz nominal 3 dB point.
	Minimum 40 dB attenuation at
_	1 MHz.
evel:	1 M Ω : 350V (dc + ac peak) at dc
	to 440 Hz, falling to 12V rms at
	1 MHz and above 50Ω : 12V rms

Input C (Option PM 9621)

Frequency Range:	70 MHz to 1.3 GHz
Prescaler Factor:	512
Operating Input Voltage	Range:
70 to 900 MHz:	10 mV rms to 12V rms
900 to 1100 MHz:	15 mV rms to 12V rms
1100 to 1300 MHz:	40 mV rms to 12V rms
Amplitude	
Modulation:	dc to 0.1 MHz: Up to 94%
	depth 0.1 to 6 MHz: Up to 85%
	depth Minimum signal must
	exceed minimum operating
	input voltage
Impedance:	50Ω nominal, ac coupled,
-	VSWR <2:1
Max Voltage	
without Damage:	12V rms, pin-diode protected
Connector:	BNC

Input C (Option PM 9624)

Frequency Range: Prescaler Factor: **Operating Input Voltage Range:** 100 MHz to 300MHz 0.3 GHz to 2.5 GHz 2.5 GHz to 2.7 GHz 2.7 GHz to 3.0 GHz Amplitude Modulation: Impedance:

64 20 mV rms to 12V rms 10 mV rms to 12V rms 20 mV rms to 12V rms 100 mV rms to 12V rms As PM 9621 50 nominal, ac coupled, VSWR <2,5:1 12V rms, pin-diode protected

Type N Female

10 MHz standard. 200 mV rms to 10V rms

Approx 1 k (ac coupled)

100 MHz to 3.0 GHz

External Reference Input D

The use of external reference is indicated on the display Input Frequency: Voltage Range: Impedance:

Input E

Max Voltage

Connector:

without Damage:

Used in Ratio A/E and external arming/gating modes DC to 80 MHz Frequency Range: Pulse Width: 6 ns minimum 2V/µs minimum Slew Rate: Trigger Level: TTL level, 1.4V nominal Trigger Slope: Positive or negative Impedance: Approx 2 k Ω (dc coupled) Damage Level: ±25V peak **Reference Output G** Frequency: 10 MHz, sine wave Output Level: >0.5V rms into 50Ω load, >0.7V rms into high impedance load Coupling: AC

Nulling/Frequency Offset

Nulling enable measurements to be displayed relative to a previously measured value or any frequency offset value entered via front panel keys

Other Functions

Other Functions	
Measuring Time:	Single cycle, 100 ns to 15 s
Local/Preset:	Go to local function in remote
	mode, or preset counter to
Restart:	default setting in local mode Starts a new measurement
Display Hold:	Freezes measuring result. Start
Display Hold.	and stop of the totalization in
	TOT A MAN.
Check:	Applies 10 MHz to the
	measuring logic
Display:	LCD with high-luminance
	backlight
Number of Digits:	10 digits plus exponent
Blanking:	Least significant digits
	can be blanked
Bar graph:	Displays input signal level or
	sensitivity setting in 3 dB steps
Accessitioner Manager	from 10mV rms to 10V rms
Auxiliary Menu:	The following functions are available from the AUX MENU
	and via the GPIB interface
Save/Recall:	19 complete instrument
bavo, mobali.	settings. 10 settings can be
	user protected
GPIB-Address:	Read and temporarily change
	via front panel keys. (Set new
	address on rear panel switch.)
Burst Frequency:	A and C input, set synchronization
	delay time
PRF:	A and C input, set synchronization
	delay time
Trigger Slope:	Positive or negative slope
Arming Start:	Positive or negative slope, set
i iiiiiiig otaati	start arming delay time
Arming Stop:	Positive or negative slope
Null:	Read and change stored offset
	frequency
Display Overflow:	Display of the 11th and 12th
	digits
Test:	Select selftests
Program Version:	Display instrument and GPIB
Time Out	program versions
Time Out:	OFF or 100 ms to 25.5s in
Analog Output:	100 ms steps Select digits and scaling factor
Display Backlight:	On/Off
Dispiny Duomigne.	

Auxiliary Functions

External Arming/External Gate

External signal on input E can be used to inhibit start and/or stop triggering. Stop arming is not applicable to Pulse Width and Duty Factor measuring modes.

OFF or 200 ns to 5s Start Arming Delay:

in 100 ns steps

Measuring function	Random Uncertainty ms	Systematic Uncertainty	LSD Displayed
Frequency Period	$\pm \frac{\sqrt{(250 \text{ps})^2 + (\text{Trigger Error})^2}}{\text{Measuring Time}} \text{ x Freq. or Period}$	± Time Base Error x Freq. or Period ± (250 ps/Meas. time) x Freq. or Period	$\frac{250 \text{ps x Freq. or Period}}{\text{Measuring Time}} \\ \pm \frac{\text{QE x Freq. or Period}}{\text{Measuring Time}}$
Ratio f_1/f_2	$\frac{\sqrt{(\text{Prescaler Factor})^2 + (f_1 \text{ x Trigger Error of } f_2)^2}}{f_2 \text{ x Measuring Time}}$		$\frac{\text{Prescaler Factor}}{f_2 \text{ x Measuring Time}}$
Pulse Width (Auto Trigger)	$\pm \sqrt{(250 \text{ ps})^2 + (\text{Trigger Error})^2}$	\pm Time Base Error x Pulse Width \pm 0.5 x Transition Time \pm 1.5 ns	100 ps
Duty Factor	$\pm \sqrt{(250 \text{ ps})^2 + (\text{Trigger Error})^2 \text{ x Frequency}}$	\pm (0.5 x Transition Time \pm 1.5 ns) x Frequency	1 x 10-6

Table 1. Measurement Uncertainties and LSD Displayed

Random Uncertainty

Random uncertainty is due to quantization error, short-term Time Base stability, internal noise and input signal noise. The random uncertainty can be reduced by increasing the measurement time. Trigger Error: Internal noise and input signal noise, expressed as an rms Trigger Error.

Trigger Error =

$1.4 \text{ x} \sqrt{(e_{amp})^2 + (e_n)^2}$
Signal slew rate (V/s)
at trigger point

Where:

 $e_{\rm amp}=mms$ input amplifier noise (250 μV mms typical) $e_{\rm n}=rms$ noise of the input signal over a 300 MHz bandwidth

Systematic Uncertainty

See crystal oscillator specifications for aging and possible frequency deviation due to the oscillator's temperature dependency

LSD Displayed

Unit value of Least Significant Digit (LSD) displayed. After calculation, the LSD value is rounded to the nearest decade before display (for example >0.5 Hz will be 1 Hz and <0.5 Hz will be 0.1 Hz). LSD blanking is available to reduce displayed resolution. Measuring times >1s can give significance in > 10 digits. The 11th and 12th digits can be displayed using the display overflow function.

Options

Battery Unit (Option PM 9623)

 The PM 9623 is a rechargeable battery unit for mounting inside the counter.

 Battery Type:
 Sealed lead-acid cells

 Battery Capacity:
 At 25C

 Standby Mode:
 Typically 20 hours with Oven Time Base

 Operating Mode:
 Typically 3 hours with Oven Time Base, and 2 hours with Oven Time Base and Input C

Recharge Time: Typically 8 hours in standby mode Overcharge and deep Battery Protection: discharge protection 12V to 24V via socket on rear External DC: panel (16V to 24V to charge internal battery) Line Failure Counter automatically switches Protection: to internal battery or external dc when the line voltage falls below 90V ac Temperature Operating: 0°C to +40°C -40°C to +50°C Storage: Weight: 1.5 kg (3.3 lb) **GPIB** Option Programmable All front panel and Functions: AUX MENU functions Compatibility: IEEE 488.2-1987, SCPI 1991.0 Interface Functions: SH1, AH1, T6, L4, SR1, RL1, DC1, DT1, E2 200 to 1600 readings/s, Maximum Measurement Rate depending on measurement to Internal Memory: function and internal data format 764 to 2600 readings, Internal Memory Size: depending on measurement function and internal data format Maximum Bus 150 to 1000 readings/s, Transfer Rate from depending on internal data internal memory: format and output data format Data Output Format: ASCII, IEEE double precision floating point Off or 100 ms to 25.5s in Time Out: 100 ms steps 0 to 4.98V in 20 mV steps, Analog Output: derived from three consecutive digits selected from the measurement result Output Impedance: 200Ω

Timebase Options					
Option model:		PM668-/-1-	PM668-/-5-	PM668-/-6-	PM668-/-7-
Retro-fittable option:		non retrofit.	PM9691/011	PM9692/011	non retro-fit.
Time base type:		Standard	OCXO	OCXO	Rubidium
Uncertainty due to:					
Calibration adjustment t	olerance, at $+ 23^{\circ}C \pm 3^{\circ}C$	<1x10 ⁻⁶	<2x10 ⁻⁸	<5x10 ⁻⁹	<5x10 ⁻¹¹
Ageing:	per 24 hr.	n.a.	<5x10 ⁻¹⁰	<3x10 ⁻¹⁰ ①	n.a.
	per month	<5x10 ⁻⁷	<1x10 ⁻⁸	<3x10 ⁻⁹	<5x10 ⁻¹¹ 2
	per year	<5x10 ⁻⁶	<7.5x10 ⁻⁸	<2x10 ⁻⁸	<1x10 ⁻⁹ /10 years 3
Temperature variation:	0°C-50°C,	<1x10 ⁻⁵	<5x10 ⁻⁹	<2.5x10 ⁻¹⁹	<3x10 ⁻¹⁰
	20°C-26°C (typ. values)	<3x10 ⁻⁶	$<6x10^{-10}$	$<4x10^{-10}$	<5x10 ⁻¹¹
Power voltage variation	: ± 10%	<1x10 ⁻⁸	<5x10 ⁻¹⁰	<5x10 ⁻¹⁰	<1x10 ⁻¹¹
Short term stability:	$\tau = 1 s$		<1x10 ⁻¹¹	<5x10 ⁻¹²	<5x10 ⁻¹¹
(Root Allan Variance)	$\tau = 10 \text{ s}$	not specified	$<1 \times 10^{-11}$	<5x10 ⁻¹²	<1.5x10 ⁻¹¹
(typical values)	$\tau = 100 \text{ s}$		n.a.	n.a.	$<5x10^{-12}$
Power-on stability:					
Deviation versus final va	alue after 24hr on time,	n.a.	<1x10 ⁻⁸	<5x10 ⁻⁹	$<4x10^{-10}$
after a warm-up time of:		30 min	10 min	10 min	10 min
Total uncertainty, for ope	erating temperature				
0° C to 50° C, at 2σ (95%) confidence interval:			_		
1 year after calibration		<1.2x10 ⁻⁵	<1x10 ⁻⁷	<2.5x10 ⁻⁸	<7x10 ⁻¹⁰
2 years after calibration		<1.5x10 ⁻⁵	$< 2x10^{-7}$	<5x10 ⁻⁸	<9x10 ⁻¹⁰
Typical total uncertainty	, for operating temperature				
20°C to 26°C, at 2 σ (95%) confidence interval:			_		
1 year after calibration		<7x10 ⁻⁶	<1x10 ⁻⁷	<2.5x10 ⁻⁸	<6x10 ⁻¹⁰
2 years after calibration		<1.2x10 ⁻⁵	<2x10 ⁻⁷	<5x10 ⁻⁸	<8x10 ⁻¹⁰

n.a.

Explanation Calibration Adjustment Tolerance is the maximal tolerated deviation from the true 10MHz frequency after a calibration. When the reference frequency does not exceed the tolerance limits at the moment of calibration, an adjustment is not needed. Total uncertainty is the total possible deviation from the true 10MHz value under influence of frequency drift due to ageing and ambient temperature variations versus the reference temperature. The operating temperature range and the calibration interval are part of this maximum calibration. specification.

General Specification		Mechanical Data		
Environmental Conditions		Width	210 mm (8.25 in)	
Temperature		Height	86 mm (3.4 in)	
Operating:	OC to +50C	Depth	395 mm (15.6 in)	
Storage:	-40°C to +70°C	Weight:	Net 3.2 kg (7 lb); shipping	
Humidity:	95% RH, 0°C to 30°C		5.5 kg (12 lb)	
Altitude Operating:	Up to 4600m (15000 ft)			
Non-operating:	Up to 12000m (40000 ft)	Additional Specifica	ation for PM6685R	
Vibration:	3G at 55 Hz per MIL-T-	(where these differ fr	rom the standard model PM6685)	
	28800D, Class 3, Style D	Short-term (Root Alla	n Variance of reference Oscilator)	
Shock:	Half-sine 40G per MIL-T-	See Timebase Options table		
	28800D, Class 3, Style D.	Warm-up time (at 2	5°C)	
	Bench handling.	Unlocked status indicated by LED		
	Shipping container.	Time to lock	approx. 5 min.	
Reliability:	MTBF 30 000 hours	Retrace:	$<2.5 \times 10^{-11}$	
Safety:	IEC 1010 Class 1, CSA 22.2 No.	Power requirements (at 25°C)		
-	231, EN61010, CE	Voltage	90 264 Vrms, 47 440Hz	
EMC:	EN 55011, VDE 0871 Level B,	Power rating	<100W for <4 min., 47W	
	FCC Part 15J Class A, CE	-	continuous operating	
	EN 50082/2	Dimensions and weight		
		Width	315 mm (12.4 in)	
Power Requirements		Weight	Net 5.5 kg (12 lb)	
AC:	90 to 265V rms, 45 to 440 Hz,	Shipping weight	8.8 kg (19 lb)	
	max 30W	11 0 0	0, ,	
DC (PM 9623):	Internal battery or external 12			
. ,	to 24V dc, max 2A			

Ordering Information

Ordering Information	
Basic Model	
PM 6685/011	Universal Frequency Counter 300 MHz incl. Standard Time Base
Rubidium Reference Ba	sic Model
PM 6685R/071	Rubidium Frequency Counter/Calibrator
Included with	One year product warranty, line
Instrument	cord, operator manual, and
	Certificate of Calibration practices
Input Frequency Option	S
PM 6685_/4_	1.3 GHz Input C (PM 9621)
PM 6685_/6_	3.0 GHz Input C (PM 9624) *
Time Base Options	
PM 6685/_1_	Standard Time Base
PM 6685/_5_	Very High Stability Oven Time Base (PM 9691)
PM 6685/ 6	Ultra-High-Stability Oven Time
1 W 0000/_0_	Base (PM 9692)
PM 6685R/_7_	Rubidium Time Base 1)
1) Product physical dimensio	ns are larger with rubidium time base. The
rubidium time base is not cu	stomer installable.

Battery Unit and GPIB Interface Options

PM 6685/_1 or PM 6685R/_1 PM 6685R/_1 PM 6685/_3 PM 6685/__6 or PM 6685R/__6

No Battery Unit or GPIB Interface Battery Unit (PM 9623) **GPIB** Interface and Time & Frequency Analysis SW: TimeView

Example, Ordering Configuration

To order the 300 MHz PM 6685 version with Standard Time base, 1,3 GHz input C and GPIB Interface, select the complete Model Number PM 6685/416

Options and Accessories

PM 9621	1.3 GHz Input C
PM 9624	3.0 GHz Input C *
PM 9691/01	Very High Stability Oven Time Base
PM 9692/01	Ultra-High-Stability Oven Time Base
PM 9623 **	Battery Unit
PM 9622/00	Rack Mount Kit for PM 6685R
PM 9622/02	Rack Mount Kit for PM6685
PM 9627	Carrying Case
PM 9627H	Heavy Duty Alumium Carrying Case
PM9020/002	200 MHz 10:1 probe 1MΩ/30pF
PM9639	2.3 GHz 500Ω probe 10:1 (BNC)

* PM9624 specification 3.0 GHz in combination with PM6685(R)

** PM 9623 can not be fitted in PM 6685R When ordered together with the basic counter, options are factory installed.

SW Drivers MET/CAL HPVEE Manuals PM6685 PM6685

PM6685

on request procedures are available driver is available

Operator * Program * Service * No charge with purchase of unit

Factory Warranty

One year product warranty Two year warranty on Rubidium Element

Fluke Corporation

P.O. Box 9090, Everett, WA 98206

Fluke Europe B.V.

P.O. Box 1186, 5602 BD Eindhoven. The Netherlands

For more information call: In the U.S.A.: (800) 443-5853 or Fax: (425) 356-5116 In Europe/M-East: +31 (0)40 2 678 200 or Fax: +31 (0)40 2 678 222 In Canada: (905) 890-7600 or Fax: (905) 890-6866 From other countries: +1(425) 356-5500 or Fax: +1 (425) 356-5116 Web access: http://www.fluke.com

©Copyright 1998 Fluke Corporation All rights reserved. 10196-ENG-03