

Agilent 53131A/132A/181A Counters

High-performance, low-cost counters simplify and speed systems and bench frequency measurements

Product Overview

- 225 MHz bandwidth (optional 1.5, 3, 5, or 12.4 GHz)
- 10- or 12-digit resolution with 1s gate time
- GPIB interface and IntuiLink connectivity software standard
- Data transfer rate of up to 200 fully formatted measurements/ second

A family of universal and RF counters to meet your needs

Agilent Technologies 53131A/132A/181A high-performance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for Agilent's high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higher-resolution measurements in a fraction of the time it takes other counters.

The 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit

testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single keystroke recalls up to 20 different stored front-panel set-ups.

For computer-controlled systems applications, each counter includes a standard GPIB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

Agilent 53131A Universal Counter

The two-channel 53131A counter offers 10 digits per second of frequency/period resolution and a bandwidth of 225 MHz. Time interval resolution is specified at 500 ps. An optional third channel provides frequency measurements up to

3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

Agilent 53132A Universal Counter

For applications requiring higher resolution, the 53132A offers the same features and functions as the 53131A, with up to 12 digits/sec frquency/period resolution and 150 ps time interval resolution. In addition, the 53132A offers advanced arming modes for time interval measurements.

Agilent 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s 53181A measures frequency, period and peak voltage. A digit-blanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 1.5 GHz, 3 GHz, 5 GHz, or 12.4 GHz. A self-guided shallow menu makes this counter exceptionally easy to use.

Agilent IntuiLink provides easy access to the counter's data from your PC

The Agilent 53131A/132A/181A counters capture precise frequency and time measurements. IntuiLink software allows that data to be put to work easily. You work in a familiar environment at all times, using PC applications such as Microsoft Excel® or Word® to analyze, interpret, display, print, and document the data you get from the counter.

Also available is BenchLink Meter software, a standalone application.

It gives you the flexibility to configure and run tests from your PC, making data gathering more convenient.

BenchLink Meter lets you:

- configure tests, including measurement type, number of readings, measurement speed, and more.
- choose display modes from real-time strip chart, histogram, readout, and table mode.
- scale measurements data.
- copy captured data to other programs.

Optional timebases offer increased stability

Optional timebases are available for 53131A/132A/181A counters to increase measurement accuracy. Option 010 provides a high stability oven timebase with aging of less than 5×10^{-10} per day.

Microsft Excel and Word are US registered trademarks of Microsoft Corporation.

Time BaseInternal Time Base Stability (see graph 3 for timebase contribution of measurement error)

		Standard (0° to 50° C)	Medium Oven (Option 001)	High Oven (Option 010)	Ultra High Oven (Option 012 for 53132A only)
Temperature Stab	ility (referenced to 25°C)	< 5 x 10 ⁻⁶	< 2 x 10 ⁻⁷	< 2.5 x 10 ⁻⁹	< 2.5 x 10 ⁻⁹
Aging Rate (after 30 days)	Per Day: Per Month: Per Year:	< 3 x 10 ⁻⁷	< 4 x 10 ⁻⁸ < 2 x 10 ⁻⁷	< 5 x 10 ⁻¹⁰ < 1.5 x 10 ⁻⁸	< 1 x 10 ⁻¹⁰ < 3 x 10 ⁻⁹ < 2 x 10 ⁻⁸
Turn-on stability v (in 30 minutes)	rs. time		< 2 x 10 ⁻⁷ referenced to 2 Hr	< 5 x 10 ⁻⁹ referenced to 24 Hr	< 5 x 10 ⁻⁹ referenced to 24 Hr
Calibration		Manual Adjust	Electronic	Electronic	Electronic

Note that power to the time base is maintained when the counter is placed in standby via the front panel switch. The internal fan will continue to operate when in standby to maintain long-term measurement reliability.

Instrument Inputs Input Specifications Channel 1 & 2 (53131A, 53132A)¹ Channel 1 (53181A)

Frequency Range

dc Coupled	dc to 225 MHz
ac Coupled	1 MHz to 225 MHz (50 Ω)
	30 Hz to 225 MHz (1 $M\Omega$)
FM Tolerance	25%

Voltage Range and Sensitivity (Sinusoid)²

dc to 100 MHz	20 mVrms to ±5 V ac + dc
100 MHz to 200 MHz	30 mVrms to ± 5 V ac + dc
200 MHz to 225 MHz	40 mVrms to ±5 V ac + dc
	(all specified at 75 mVrms
	with opt. rear connectors) ²

Voltage Range and Sensitivity (Single-Shot Pulse)²

4.5 ns to 10 ns	
Pulse Width	100 mVpp to 10 Vpp
	(150 mVpp with optional
	rear connectors)3
>10 ns Pulse Width	50 mVpp to 10 Vpp
	(100 mVpp with optional
	rear connectors) ³
	rear connectors)

Trigger Level²

Range	± 5.125 V
Accuracy	\pm (15 mV + 1% of trigger
	level)
Resolution	5 mV

Damage Level

$50~\Omega$ 0 to 3.5 kHz, $1~M\Omega$ 3.5 kHz to $100~$ kHz.	5 Vrms 350 Vdc + ac pk
3.5 kHz to 100 kHz, 1 MΩ	350 Vdc + ac pk linearly derated to 5 Vrms
>100 kHz, 1 MΩ	5 Vrms

Input Characteristics Channel 1 & 2 (53131A, 53132A)¹ Channel 1 (53181A)

Impedance	$1 \mathrm{M}\Omega$ or 50Ω
1 M Ω Capacitance	30 pF
Coupling	ac or dc
Low-Pass Filter	100 kHz, switchable
	-20 dB at > 1 MHz
Input Sensitivity	Selectable between Low,
	Medium, or High (default).
	Low is approximately 2x
	High Sensitivity.

- Specifications and Characteristics for Channels 1 and 2 are identical for both common and separate configurations.
- Values shown are for X1 attenuator setting. Multiply all values by 10 (nominal) when using the X10 attenuator setting.
- 3. When the 53131A or 53132A are ordered with the optional rear terminals (Opt. 060), the channel 1 and 2 inputs are active on both front and rear of the counter. When the 53181A is ordered with the optional rear terminal, the channel 1 input is active on both front and rear of the counter. For this condition, specifications indicated for the rear connections also apply to the front connections.

Trigger Slope	Positive or Negative
Auto Trigger Level	
Range	0 to 100% in 10% steps
Frequency	> 100 Hz
Input Amplitude	> 100 mVpp
	(No amplitude modulation)
Attenuator	
Voltage Range	x10
Trigger Range	x10

Input Specifications⁴ Channel 3 (53131A, 53132A) Channel 2 (53181A) **Frequency Range**

Option 015	100 MHz to 1.5 GHz
(for 53181A only)	(see Opt. 030 for addi-
	tional specs)
Option 030	100 MHz to 3 GHz
Option 050	200 MHz to 5 GHz
Option 124	200 MHz to 12.4 GHz

Power Range and Sensitivity (Sinusoid)

Option 030	100 MHz to 2.7 GHz: -27 dBm to +19 dBm 2.7 GHz to 3 GHz: -21 dBm to +13 dBm
Option 050	200 MHz to 5 GHz: -23 dBm to +13 dBm
Option 124	200 MHz to 12.4 GHz -23 dBm to +13 dBm

When optional additional channels are ordered with Opt. 060, refer to configuration table for Opt. 060 under ordering info on page 8. There is no degradation in specifications for this input, as applicable.

Damage Level

Option 030	5 Vrms	
Option 050	+25 dBm	
Option 124	+25 dBm	
Characteristics		
Impedance	50 Ω	
Carrelina		
Coupling	AC	

External Arm Input Specifications⁵ Signal Input Range TTL Compatible

Timing Postriotions

50 ns
250 ns
50 ns) Vrms

External Arm Input Characteristics5

Impedance	1 K22
Input Capacitance	17 pF
Start/Stop Slope	Positive or Negative

External Time Base Input Specifications

200 mVrms to 10 Vrms
10 Vrms
1 MHz, 5 MHz, and
10 MHz
(53132A 10 MHz only)

Time Base Output Specifications

output riequency	TO IVITIZ
Voltage	$>$ 1 Vpp into 50 Ω
	(centered around 0 V)

Measurement Specifications Frequency (53131A, 53132A, 53181A)

Channel 1 and 2 (53131, 53132); Channel 1 (53181)

Range	0.1 Hz to 225 MHz

Channel 3 (53131A, 53132A) Channel 2 (53181A)

Option 015 (53181only)	100 MHz to 1.5 GHz
Option 030	100 MHz to 3 GHz
Option 050	200 MHz to 5 GHz
Option 124	200 MHz to 12.4 GHz
(Period 2 or 3 selectable via GPIB only)	

Period (53131, 53132, 53181)

Channel 1 and 2 (53131, 53132); Channel 1 (53181)

Range	4.44 ns to 10 s

Channel 3 (53131A, 53132A); Channel 2 (53181A)

Option 015 (53181 only)	0.66 ns to 10 ns
Option 030	0.33 ns to 10 ns
Option 050	0.2 ns to 5 ns
Option 124	80 ps to 5 ns

Frequency Ratio (53131, 53132, 53181)

Measurement is specified over the full signal range of each input.

Results Range	10 ⁻¹⁰ to 10 ¹¹
"Auto" Gate Time	100 ms

Available for all measurements except Peak Volts. External Arm is referred to as External Gate for some measurements.

For Automatic or External Arming:

(and signals < 100 Hz using Timed Arming)

where N = 1 for standard channel Frequency < 1 MHz 4 for standard channel Frequency > 1 MHz 128 for optional channel

500 ps

1.25 ns

1.25 ns Trigger: Default setting is Auto Trigger at 50%

For Time or Digits Arming:

 t_{res} tiitter 500 ps 50 ps 225 ps typical see graphs for worst case resolution performance

Number of Samples = Gate Time x Frequency (Frequency < 200 kHz) Gate Time x 200,000 (Frequency > 200 kHz)

Trigger: Default setting is Auto Trigger at 50%

worst case

Time Interval (53131A, 53132A)

Measurement is specified over the full signal ranges⁶ of Channels 1 and 2.

Results Range	-1 ns to 10 ⁵ s
LSD	500 ps (53131)/ 150 ps (53132)

Phase (53131A, 53132A)

Measurement is specified over the full signal range of Channels 1 and 2.

Duty Cycle (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1. However, both the positive and negative pulse widths must be greater than 4 ns

Results Range	0 to 1 (e.g. 50% duty cycle
	would be displayed as .5)

6. See Specifications for Pulse Width and Rise/Fall Time measurements for additional restrictions on signal timing characteristics

Rise/Fall Time (53131A, 53132A)

Measurement is specified over the full signal ranges of Channel 1. The interval between the end of one edge and start of a similar edge must be greater than 4 ns.

Edge Selection	Positive or Negative
Trigger	Default setting is Auto Trigger at 10% and 90%
Results Range	5 ns to 10 ⁵ s
LSD	500 ps (53131)/150 ps (53132)

Pulse Width (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1. The width of the opposing pulse must be greater than 4 ns.

Pulse Selection	Positive or Negative
Trigger	Default setting is Auto Trigger at 50%
Results Range	5 ns to 10 ⁵ s
LSD	500 ps (53131)/150 ps (53132)

Totalize (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1.

Results Range	0 to 10 ¹⁵
Resolution	± 1 count

Peak Volts (53131A, 53132A, 53181A)

Measurement is specified on Channels 1 and 2 for dc signals; or for ac signals of frequencies between 100 Hz and 30 MHz with peak-to-peak amplitude greater than 100 mV.

Results Range	-5.1 V to +5.1 V
Resolution	10 mV

Peak Volts Systematic Uncertainty

For measurements using Ch3, substitute Ch3 for Ch2 in these equa-

for ac signals:	25 mV + 10% of V	
for dc signals:	25 mV + 2% of V	
Use of the input at	tenuator multiplies all voltage	
specifications (input range, results range, resolu-		
tion and systematic uncertainty) by a nominal		
factor of 10.		

Time Interval, Pulse Width, Rise/Fall Time (53131 and 53132 only):

RMS Resolution: $\sqrt{(t_{res})^2 + Start Trigger Error^2 + Stop Trigger Error^2}$

Systematic Uncertainty:

- \pm (Time Base Error imes Measurement) \pm Trigger Level Timing Error \pm 1.5 ns Differential Channel Error (53131A)
- \pm (Time Base Error imes Measurement) \pm Trigger Level Timing Error \pm 900 ps Differential Channel Error (53132A)

where $t_{res} = 750 \text{ ps}$ for the 53131A, 300 ps for the 53132A

 $\textbf{Frequency Ratio:} \ \, \frac{Ch1}{Ch2}, \frac{Ch1}{Ch3}, \frac{Ch2}{Ch1}, \frac{Ch3}{Ch1}, \frac{Ch3}{Ch1} \ \, \textbf{(53131A and 53132A)} \quad \, \, \frac{Ch1}{Ch2}, \frac{Ch2}{Ch1} \ \, \textbf{(53181A)}$

$$\textbf{LSD: Ratio } \frac{1}{2} : \frac{1}{\textit{Ch2 Freq} \times \textit{Gate Time}} \qquad \textbf{Ratio } \frac{2}{1} : \frac{\textit{Ch2 Freq}}{\textit{(Ch1 Freq)}^2 \times \textit{Gate Time}}$$

RMS Resolution: Ratio
$$\frac{1}{2}$$
: $\frac{2 \times \sqrt{1 + (Ch1 \ Freq \times Ch2 \ Trigger \ Error)^2}}{Ch2 \ Freq \times \ Gate \ Time}$

Ratio
$$\frac{2}{1}$$
: $\frac{2 \times Ch2 \ Freq \times \sqrt{1 + (Ch1 \ Freq \times Ch2 \ Trigger \ Error)^2}}{(Ch1 \ Freq)^2 \times Gate \ Time}$

tions. To minimize relative phase measurement error, connect the higher frequency signal to channel 1.

Systematic Uncertainty: ± 2x resolution

Phase (53131 and 53132)

RMS Resolution:
$$\sqrt{\left((t_{res})^2 + (2 \times Trigger \, Error^2)\right)} \times \left(1 + \left(\frac{Phase}{360\,^{\circ}}\right)^2\right)} \times Frequency \times 360\,^{\circ}$$

Systematic Uncertainty:

- (± Trigger Level Timing Error ± 1.5 ns Differential Channel Error) × Frequency × 360 ° (53131)
- (± Trigger Level Timing Error ± 900 ps Differential Channel Error) × Frequency × 360 ° (53132)

Duty Cycle (53131 and 53132)

RMS Resolution: $\sqrt{((T_{res})^2 + (2 \times Trigger Error^2)) + (1 + Duty Cycle^2)} \times Frequency$

Gate Time

Auto Mode, or 1 ms to 1000 s

Measurement Throughput

GPIB ASCII

200 measurements/s (maximum)

Measurement Armino

Measurement Arm Start Measurement	i ing Free Run, Manual, or External
Stop Measurement	Continuous, Single, External, or Timed
Time Interval Delayed Arming	100 μs to 10 s (53131A) 100 ns to 10 s (53132A)

Arming Modes

(Note that not all arming modes are available for every measurement function.)

Auto Arming: Measurements are initiated immediately and acquired as fast as possible, using a minimum number of signal edges.

Timed Arming: The duration of the measurement is internally timed to a user-specified value (also known as the "gate time").

Digits Arming: Measurements are performed to the requested resolution (number of digits) through automatic selection of the acquisition time

External Arming: An edge on the External Arm Input enables the start of each measurement. Auto Arming, Timed arming modes or another edge on the External Arm Input may be used to complete the measurement.

Time Interval Delayed Arming: For Time Interval measurements, the Stop Trigger condition is inhibited for a user-specified time following the Start Trigger. The 53132A offers advanced time interval arming capabilities including use of user specified time or Channel 2 events to delay both Start and Stop Triggers.

Measurement Limits

Limit Checking: The measurement value is checked against user-specified limits at the end of each measurement.

Display Modes: The measurement result may be displayed as either the traditional numeric value or graphically as an asterisk moving between two vertical bars.

Out-of-Limits Indications:

- The limits annunciator will light on the front panel display.
- The instrument will generate an SRQ if enabled via GPIB.
- The limits hardware signal provided via the RS-232 connector will go low for the duration of the out-of-limit condition.

5

 If the Analog Display mode is enabled, the asterisk appears outside the vertical bars, which define the upper and lower limits.

Fractional Time Base Error (see graph 3)

Time base error is the maximum fractional frequency variation of the time base due to aging or fluctuations in ambient temperature or line voltage:

Time Base Error =
$$\left(\frac{\Delta f}{f} aging \ rate + \frac{\Delta f}{f} temperature + \frac{\Delta f}{f} line \ voltage\right)$$

Multiply this quantity by the measurement result to yield the absolute error for that measurement. Averaging measurements will not reduce (fractional) time base error. The counters exhibit negligible sensitivity to line voltage; consequently the line voltage term may be ignored.

Trigger Error

External source and input amplifier noise may advance or delay the trigger points that define the beginning and end of a measurement. The resulting timing uncertainty is a function of the slew rate of the signal and the amplitude of spurious noise spikes (relative to the input hysteresis band). The (rms) trigger error associated with a single trigger point is:

$$\mbox{Trigger Error} = \frac{\sqrt{(E_{\it input}})^2 + (E_{\it signal})^2}}{\textit{Input Signal Slew Rate at Trigger Point}} \; (\mbox{in seconds})$$

where

 E_{input} = RMS noise of the input amplifier: 1 mVrms (350 μ Vrms Typical). Note that the internal measurement algorithms significantly reduce the contribution of this term.

 E_{signal} = RMS noise of the input signal over a 225 MHz bandwidth (100 kHz bandwidth when the low-pass filter is enabled). Note that the filter may substantially degrade the signal's slew rate at the input of the trigger comparator.

For two-trigger-point measurements (e.g. Rise Time, Pulse Width), the Trigger Errors will be referred to independently as Start Trigger Error and Stop Trigger Error.

Trigger Level Timing Error (see graph 6)

Trigger level timing error results from a deviation of the actual trigger level from the specified level. The magnitude of this error depends on resolution and accuracy of the trigger level circuit, input amplifier fidelity, input signal slew rate, and width of the input hysteresis band.

The following equations should be summed together to obtain the overall Trigger Level Timing Error. At the "High" sensitivity input setting, the hysteresis band can be assumed to be the sensitivity of the counter input (see page 2). Reduction of input sensitivity or use of the attenuator will increase the size of this band.

0.5 x Hysteresis Band

0.5 x Hysteresis Band

Input Hysteresis Error: Input Signal Slew Rate at Start Trigger Point _ Input Signal Slew Rate at Stop Trigger Point

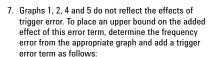
Trigger Level Setting Error: \pm Input Signal Slew Rate at Start Trigger Point \pm Input Signal Slew Rate at Start Trigger Point \pm Input Signal Slew Rate at Stop Trigger Point

Differential Channel Error

The differential channel error term stated in several Systematic Uncertainty equations accounts for channel-to-channel mismatch and internal noise. This error can be substantially reduced by performing a TI calibration (accessible via the Utility Menu) in the temperature environment in which future measurements will be made.

Graph 1: Agilent 53131A/181A–Worst Case RMS Resolution⁷

(Automatic or External Arming)

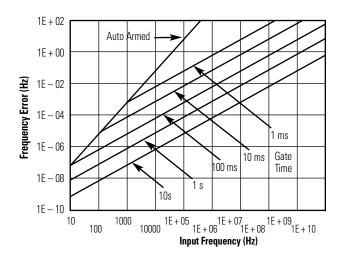

The graphs may also be used to compute errors for Period Measurements. To find the Period error (DP), calculate the frequency of the input signal (F=1/P) and find the frequency error (DF) from the chart.

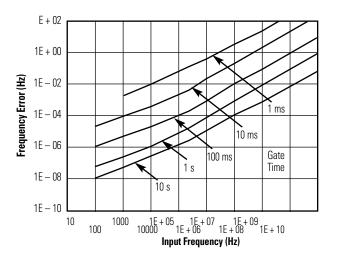
Then calculate the period error as:

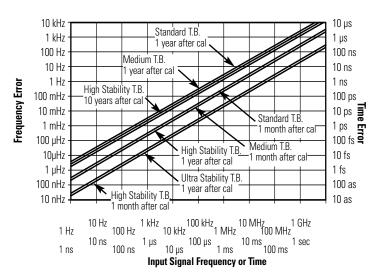
$$\Delta P = \left(\frac{\Delta F}{F}\right) \times F$$

Graph 2: Agilent 53131A/181A–Worst Case RMS Resolution⁷ (Time or Digits Arming)

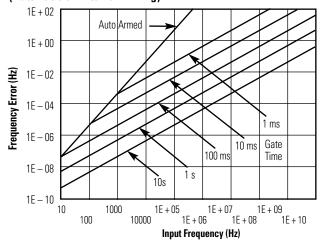
Graph 3: Timebase Error

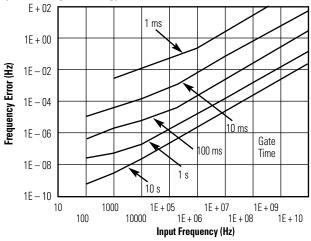


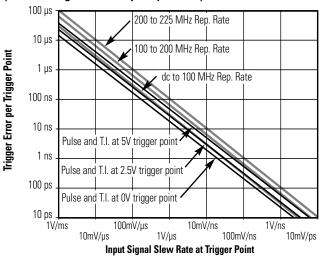

Time or Digit Arming


Frequency Error +
$$\left(\frac{4 \times \sqrt{2} \times \textit{Trigger Error}}{\textit{Gate Time} \times \sqrt{\textit{Number of Samples}}}\right) \times \frac{\textit{Frequency or Period}}{\textit{Period}}$$

Automatic or External Arming


Frequency Error +
$$\left(\frac{\sqrt{2} \times Trigger Error}{Gate Time}\right) \times \begin{cases} Frequency \\ or \\ Period \end{cases}$$




Graph 4: Agilent 53132A–Worst Case RMS Resolution⁷ (Automatic or External Arming)

Graph 5: Agilent 53132A–Worst Case RMS Resolution⁷ (Time or Digits Arming)

Graph 6: Trigger Level Timing Error (Level Setting Error and Input Hysteresis)

Measurement Statistics

Available Statistics	Mean, Minimum, Maximum, Standard Deviation
Number of Measurements	2 to 1,000,000. Statistics may be collected on all measurements or on only those which are between the limit bands. When the Limits function is used in conjunction with Statistics, N (number of measurements) refers to the number of in-limit measurement resolution will improve in proportion to N, up to the numerical processing limits of the instrument.
Measurements	Statistics may be collected for all measurements except Peak Volts and Totalize.

General Information Save and Recall

Up to 20 complete instrument setups may be saved and recalled later. These setups are retained when power is removed from the counter.

retained when power is	s removed from the counter.
Rack Dimensions (HxWxD)	88.5 mm x 212.6 mm x 348.3 mm
Weight	3.5 kg maximum
Warranty	1 year
Power Supply	100 to 120 VAC \pm 10% -50, 60 or 400 Hz \pm 10% 220 to 240 VAC \pm 10% -50 or 60 Hz \pm 10%
ac Line Selection	Automatic
Power Requirements	170 VA maximum (30 W typical)
Environment	0° C to 55° C operating -40° C to 71° C storage
Remote Interface	GPIB (IEEE 488.1-1987, IEEE 488.2-1987)
Remote Programming Language	SCPI-1992.0 (Standard Commands for Programmable Instruments)
Safety	Designed in compliance with IEC-1010, UL-3111-1 (draft), CAN/CSA 1010.1
ЕМС	CISPR-11, EN50082-1, IEC 801-2, -3, -4
Radiated Immunity Testing	When the product is operated at maximum sensitivity (20 mVrms) and tested at 3 V/m according to IEC 801-3, external 100 to 200 MHz electric fields may cause frequency miscounts.

Ordering Information

53131A 10 digit/s, 500 ps Universal Counter

53132A 12 digit/s, 150 ps Universal Counter

53181A 10-digit/s RF Counter

Accessories Included

Each counter comes with IntuiLink software, standard timebase, power cord, operating, programming and service manuals.

Manual Options (please specify one when ordering)

ABA US English

ABD German

ABE Spanish

ABF French

ABJ Japanese

ABZ Italian

ABO Taiwan Chinese

AB1 Korean

AB2 Chinese

Other Options

Opt. 001 Medium-stability timebase

Opt. 010 High-stability timebase

Opt. 012 Ultra-High stability timebase (53132A only)

Opt. 015 1.5 GHz RF input Ch 2 for 53181A only

Opt. 030 3 GHz RF input Ch 3 (Ch 2 on 53181A)

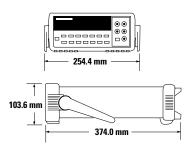
Opt. 050 5 GHz RF input with type N connector Ch 3 (Ch 2 on 53181A)

Opt. 124 12.4 GHz RF input with type N connector Ch 3 (Ch 2 on 53181A)

Opt. 060 Rear-panel connectors*

Opt. 0B0 Delete Manual Set

Opt. 1BP MIL-STD-45662A Calibration with test data


Opt. 1CM Rack Mount Kit (P/N 5063-9240)**

* Opt 060 Configurat	tion Table
Ch1 & Ch2	front & rear (in parallel)
Ch3	Opt. 030 rear only, front plugged
Ch3	Opt. 050/124 front only
53181	
Ch1	front & rear (in parallel)
Ch2	Opt. 015/030 rear only, front plugged
Ch2	Opt. 050/124

^{**} For racking two side-by-side, order both Lock-link Kit (P/N 5061-9694) and Flange Kit (P/N 5063-9212)

Accessories

34131A Hard Carrying case 34161A Accessory pouch 34812A BenchLink Meter software

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlay Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Product specifications and descriptions in this document subject to change without notice. Copyright © 2001 Agilent Technologies Printed in the USA May 1, 2004 5967-6039EN

^{***}Call Agilent for more information on Opt. W50 prices.