

Agilent E8257D PSG **Analog Signal Generator**

The Agilent E8257D is a fully synthesized signal generator with high output power, low phase noise, and optional ramp sweep capability.

All specifications apply over a 0 to 55 °C range (unless otherwise stated) and apply after a 45 minute warm-up time. Supplemental characteristics, denoted as typical, nominal, or measured, provide additional (non-warranted) information at 25 °C, which may be useful in the application of the product.

Definitions

Specifications (spec): Represents warranted performance.

Typical (typ): Represents characteristic performance which is non-warranted. Describes performance that will be met by a minimum of 80% of all products.

Nominal (nom): Represents characteristic performance which is non-warranted. Represents the value of a parameter that is most likely to occur; the expected mean or average.

Measured: Represents characteristic performance which is non-warranted. Represents the value of a parameter measured on an instrument during design stage.

Table of Contents

	_
Specifications	3
Frequency	3
Step (digital) sweep4	1
Ramp (analog) sweep	1
Output	ō
Spectral purity	3
Frequency modulation11	1
Phase modulation11	1
Amplitude modulation12	2
External modulation inputs12	2
Internal modulation source12	2
Pulse modulation13	3
Narrow pulse modulation13	3
Internal pulse generator14	1
Simultaneous modulation14	1
Remote programming15	ō
General specifications15	ō
Input/Output Descriptions	3
Front panel connectors16	3
Rear panel connectors16	3
Options, Accessories, and Related Products	3
Web Resources	9
Related Agilent Literature	9

Specifications

Frequency

Range ¹				
Option 520		250 kHz to 20 GHz		
Option 540		250 kHz to 40 GHz		
Option 550	250 kHz to 50 GHz			
Option 567	250 kHz to 67 GHz (ope	erational up to 70 GHz)		
Resolution				
CW	0.001 Hz			
All sweep modes	0.01 Hz ²			
CW switching speed ³	< 10 ms (typ)			
Phase offset	Adjustable in nominal 0	.1 ° increments		
Frequency bands				
Band	Frequency range	N #		
1	250 kHz to 250 MHz	1/8		
2	> 250 to 500 MHz	1/16		
3	> 500 MHz to 1 GHz	1/8		
4	> 1 to 2 GHz	1/4		
5	> 2 to 3.2 GHz	1/2		
6	> 3.2 to 10 GHz	1		
7	> 10 to 20 GHz	2		
8	> 20 to 40 GHz	4		
9	> 40 GHz	8		
Accuracy	Calibration ± aging rate	± temperature effects		
	± line voltage effects (nom)			
Internal timebase reference oscil	lator			
	Standard	Option UNR		
Aging rate	$< \pm 1 \times 10^{-7}$ /year or	< ±3 x10 ⁻⁸ /year or		
	< ±4.5 x 10 ⁻⁹ /day	< ±2.5 x 10 ⁻¹⁰ /day		
	after 45 days	after 30 days		
Temperature effects (typ)	< ±5 x 10 ⁻⁸ 0 to 55 °C	< ±4.5 x 10 ⁻⁹ 0 to 55 °C		
Line voltage effects (typ)	< ±2 x 10 ⁻⁹ for	< ±2 x 10 ⁻¹⁰ for		
	+5% to –10% change	±10% change		
External reference frequency		-		
	1, 2, 2.5, 5, 10 MHz	10 MHz only		
Lock range	±0.2 ppm	±1.0 ppm		
Reference output				
Frequency	10 MHz			
Amplitude	> +4 dBm into 50 Ω loa	d (typ)		
External reference input				
Amplitude	> –3 dBm			
Option UNR	5 dBm ±5 dB⁴			
Input impedance	50 Ω (nom)			
patpoddiloo				

^{1.}

Operational, but unspecified, down to 100 kHz. In ramp sweep mode (Option 007), resolution is limited with narrow spans and slow sweep 2. speeds. Refer to ramp sweep specifications for more information.

Time from GPIB trigger to frequency within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz. 3.

To optimize phase noise use 5 dBm \pm 2 dB. 4.

Step (digital) sweep

Ramp (analog) sweep

(Option 007)²

	0				
Operating modes		equency or amplitude or be quency or amplitude or be			
Sweep range	List sweep of fre		our (arbitrary list)		
Frequency sweep	Within instrums	nt fraguanay ranga			
Amplitude sweep		Within instrument frequency range Within attenuator hold range (see "Output" section)			
Dwell time	1 ms to 60 s	of noid range (see Outpi			
Number of points		2 to 65535 (step sweep)			
infilmer of hours					
Triggering		2 to 1601 per table (list sweep) Auto, external, single, or GPIB			
Settling time	Auto, external, 3				
Frequency	< 8 ms (typ) 1				
Amplitude	< 5 ms(typ)				
Ampiltude					
Operating modes	Synthesized free	luency sweep			
	(start/stop), (ce	nter/span), (swept CW)			
	Power (amplitud	le) sweep (start/stop)			
	Manual sweep				
	RPG control betw	ween start and stop frequ	uencies		
	Alternate sweep				
	Alternates succe	Alternates successive sweeps between current and			
	stored states				
Sweep span range	Settable from m	inimum³ to full range			
Maximum sweep rate	Start frequency	Maximum sweep rate	Max span for		
			100 ms sweep		
	250 kHz to < 0.5 GHz	25 MHz/ms	2.5 GHz		
	0.5 to < 1 GHz	50 MHz/ms	5 GHz		
	1 to < 2 GHz	100 MHz/ms	10 GHz		
	2 to < 3.2 GHz	200 MHz/ms	20 GHz		
	≥ 3.2 GHz	400 MHz/ms	40 GHz		
Frequency accuracy	± 0.05% of span	± timebase (at 100 ms s	weep time, for		
	sweep spans les	sweep spans less than maximum values given above)			
		es proportionally as swee			
Sweep time	(forward sweep, r	not including bandswitch a	nd retrace intervals		
Manual mode settable	10 ms to 200 see	conds			
Resolution	1 ms				
Auto mode	Set to minimum	value determined by max	kimum sweep		
	rate and 8757D s	setting			
Triggering	Auto, external, s				
Markers		continuously variable fre	quency markers		
Display		or RF amplitude pulse			
Functions		1/M2 to start/stop, mark			
Two-tone (master/slav		synchronously track each			
measurements⁵		ntrol of start/stop freque			
Network analyzer		with Agilent 8757D scal	ar		
compatibility	network analyze				
		Also useable with Agilent 8757A/C/E scalar network			
	analyzers for ma	king basic swept measu	rements. ⁷		

^{1. 19} ms (typ) when stepping from greater than 3.2 GHz to less than 3.2 GHz.

6. When measuring low-pass devices in AC mode, dynamic range may be reduced up to 10 dB below 3.2 GHz. An external highpass filter may be required to remove 27 kHz pulse source feed-through (11742A 45 MHz to 26.5 GHz blocking capacitor recommended).

^{2.} During ramp sweep operation, AM, FM, phase modulation, and pulse modulation are useable but performance is not guaranteed.

^{3.} Minimum settable sweep span is proportional to carrier frequency and sweep time. Actual sweep span may be slightly different than desired setting for spans less than [0.00004% of carrier frequency or 140 Hz] x [sweep time in seconds]. Actual span will always be displayed correctly.

Typical accuracy for sweep times > 100 ms can be calculated from the equation: [(0.005% of span)/(sweep time in seconds)] ± timebase. Accuracy is not specified for sweep times < 100 ms.

^{5.} For master/slave operation use Agilent part #8120-8806 master/slave interface cable.

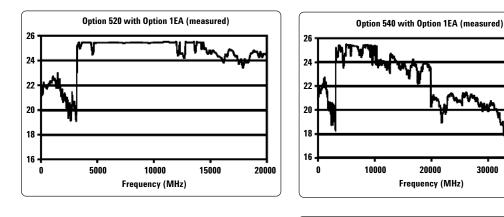
^{7.} GPIB system interface is not supported with 8757A/C/E, only with 8757D. As a result, some features of 8757A/C/E, such as frequency display, pass-through mode, and alternate sweep, do not function with PSG signal generators.

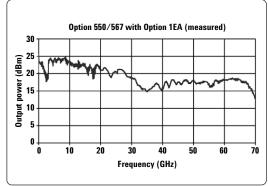
Output

Power¹ (dBm) Frequency range	Standard	Option 1EA
roquonoy range	otunuuru	spec. (typ)
Option 520:		• • • • • •
250 kHz to 3.2 GHz	-20 to +13	-20 to +16 (+19)
250 kHz to 3.2 GHz with Option UNW	-20 to +11	-20 to +11 (+14)
250 kHz to 3.2 GHz with Option 1EH	-20 to +13 ²	-20 to +13 (+16) ²
250 kHz to 3.2 GHz with Options UNW and 1EH	-20 to +10 ²	-20 to +10 (+13) ²
> 3.2 to 20 GHz	-20 to +13	-20 to +20 (+23)
Option 540:		
250 kHz to 3.2 GHz	-20 to +9	-20 to +15 (+18)
250 kHz to 3.2 GHz with Option UNW	-20 to +9	-20 to +10 (+13)
250 kHz to 3.2 GHz with Option 1EH	-20 to +9	-20 to +12 (+15) ²
250 kHz to 3.2 GHz with Options UNW and 1EH	-20 to +9 ²	-20 to +9 (+12) ²
> 3.2 to 20 GHz	-20 to +9	-20 to +18 (+21)
> 20 to 30 GHz	-20 to +9	-20 to +14 (+20)
> 30 to 40 GHz	-20 to +9	-20 to +14 (+17)
Options 550 and 567:		
250 kHz to 3.2 GHz	–20 to +5	-20 to +14 (+17)
250 kHz to 3.2 GHz with Option UNW	–20 to +5	-20 to +9 (+12)
250 kHz to 3.2 GHz with Option 1EH	–20 to +5	-20 to +11 (+14) ²
250 kHz to 3.2 GHz with Options UNW and 1EH	-20 to +5	-20 to +8 (+11) ²
> 3.2 to 10 GHz	-20 to +5	-20 to +14 (+21)
> 10 to 20 GHz	-20 to +5	-20 to +14 (+17)
> 20 to 30 GHz	-20 to +5	-20 to +11 (+17)
> 30 to 65 GHz	-20 to +5	-20 to +11 (+14)
> 65 to 67 GHz	-20 to +5	-20 to +10 (+14)
> 67 to 70 GHz	-20 to +5 (typ)	-20 to +8 (typ)
Option 520 with step attenuator (Option 1E1):		
250 kHz to 3.2 GHz	-135 to +11	-135 to +15 (+18)
250 kHz to 3.2 GHz with Option UNW	-135 to +10	-135 to +10 (+13)
250 kHz to 3.2 GHz with Option 1EH	-135 to +113	-135 to +12 (+15) ²
250 kHz to 3.2 GHz with Options UNW and 1EH	-135 to +9 ²	-135 to +9 (+12) ²
> 3.2 to 20 GHz	-135 to +11	-135 to +18 (+20)
Option 540 with step attenuator (Option 1E1):		
250 kHz to 3.2 GHz	–135 to +7	–135 to +14 (+17)
250 kHz to 3.2 GHz with Option UNW	–135 to +7	–135 to +9 (+12)
250 kHz to 3.2 GHz with Option 1EH	–135 to +7	-135 to +11 (+14) ²
250 kHz to 3.2 GHz with Options UNW and 1EH	-135 to +73	–135 to +8 (+11)²
> 3.2 to 20 GHz	–135 to +7	-135 to +16 (+20)
> 20 to 30 GHz	–135 to +7	–135 to +12 (+18)
> 30 to 40 GHz	-135 to +7	-135 to +12 (+16)
Options 550 and 567 with step attenuator (Opti	ion 1E1):	
250 kHz to 3.2 GHz	-110 to +3	-110 to +13 (+16)
250 kHz to 3.2 GHz with Option UNW	-110 to +3	-110 to +8 (+11)
250 kHz to 3.2 GHz with Option 1EH	-110 to +3	-110 to +10 (+13) ²
250 kHz to 3.2 GHz with Options UNW and 1EH	-110 to +3	-110 to +7 (+10) ²
> 3.2 to 10 GHz	-110 to +3	-110 to +13 (+20)
> 10 to 20 GHz	-110 to +3	-110 to +13 (+16)
> 20 to 30 GHz	-110 to +3	-110 to +9 (+16)
> 30 to 65 GHz	-110 to +3	-110 to +9 (+12)
> 65 to 67 GHz	-110 to +3	-110 to +8 (+12)
> 67 to 70 GHz	-110 to +3 (typ)	-110 to +6 (typ)

 Maximum power specification is warranted from 15 to 35 °C, and is typical from 0 to 15 °C. Maximum power over the 35 to 55 °C range typically degrades less than 2 dB.

^{2.} With harmonic filters switched off. With filters on, maximum output power is reduced 3 dB for frequencies below 2 GHz.

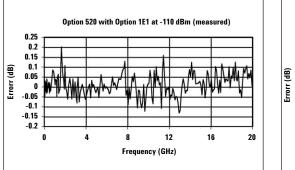

^{3.} With harmonic filters switched off. With filters on, maximum output power is reduced 2 dB for frequencies below 2 GHz.

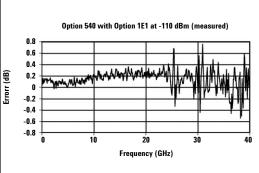

Step attenuator ¹ (Option 1E1)	
Options 520 and 540	
Options 550 and 567	

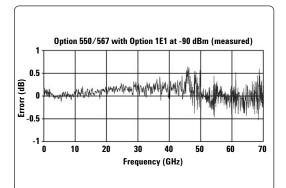
0 dB and 5 dB to 115 dB in 10 dB steps 0 dB to 90 dB in 10 dB steps

40000

Maximum available power (measured)


Attenuator hold ra	ange					
Minimum	From –20 dB	m to maximum spe	cified output powe	er with step		
	attenuator in 0 dB position. Can be offset using Option 1E1 attenuator.					
Amplitude switch	ing speed ²					
ALC on or off		< 3 ms (typ)				
(without power se	arch)					
Level accuracy ³ (dB)					
Frequency	> +10 dBm	+10 to 0 dBm	0 to –10 dBm	–10 to –20 dBm		
250 kHz to 2 GHz	±0.6	±0.6	±0.6	±1.4		
2 GHz to 20 GHz	±0.8	±0.8	±0.8	±1.2		
> 20 to 40 GHz	±1.0	±0.9	±0.9	±1.3		
> 40 to 50 GHz		±1.3	±0.9	±1.2		
> 50 to 67 GHz		±1.5	±1.0	±1.2 (typ)		


1. The step attenuator provides coarse power attenuation to achieve low power levels. Fine power level adjustment is provided by the ALC (Automatic Level Control) within the attenuator hold range.

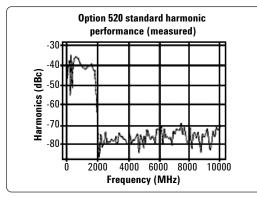

- 2. To within 0.1 dB of final amplitude within one attenuator range. Add 10 to 50 ms when using power search.
- 3. Specifications apply in CW and list/step sweep modes over the 15 to 35 °C temperature range. Degradation outside this range, for power levels > -10 dBm, is typically < 0.3 dB. In ramp sweep mode (with Option 007), specifications are typical. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz. Specifications do not apply above the maximum specified power.</p>

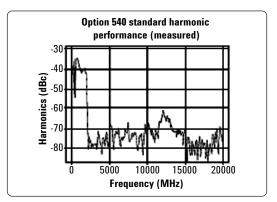
Level accuracy	Level accuracy with step attenuator (Option 1E1) ¹ (dB)						
Frequency	> +10 dBm	+10 to 0 dBm	0 to –10 dBm	–10 to –70 dBm	–70 to –90 dBm		
250 kHz to 2 GH	z ±0.6	±0.6	±0.6	±0.7	±0.8		
> 2 to 20 GHz	±0.8	±0.8	±0.8	±0.9	±1.0		
> 20 to 40 GHz	±1.0	±0.9	±0.9	±1.0	±2.0		
> 40 to 50 GHz		±1.3	±0.9	±1.5	±2.5		
> 50 to 67 GHz		±1.5	±1.0	±1.5 (typ)	±2.5 (typ)		

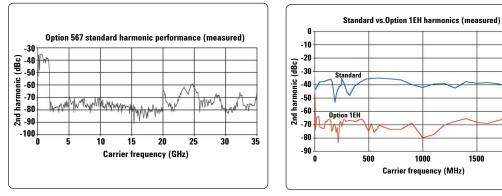
Level accuracy (measured)

0.01 dB	
0.01 dB/°C (typ) ²	
2 to 1601 points/table	
Up to 10,000, memory limited	
Arbitrary, within attenuator range	
Remote power meter ³ , remote bus, manual (user edit/view)	

Specifications apply in CW and list/step sweep modes over the 15 to 35 °C temperature range, with attenuator hold off (normal operating mode). Degradation outside this range, for ALC power levels > -10 dBm, is typically < 0.3 dB. In ramp sweep mode (with Option 007), specifications are typical. For instruments with type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz. Specifications do not apply above the maximum specified power.


^{2.} Options 550 and 567: $0.03 dB/^{\circ}C$ (typ) above 2 GHz.


^{3.} Compatible with Agilent EPM Series (E4418B and E4419B) power meters.


Output impedance	50 Ω (nom)
SWR (internally leveled)	
250 kHz to 2 GHz	< 1.4:1 (typ)
> 2 GHz to 20 GHz	< 1.6:1 (typ)
> 20 GHz to 40 GHz	< 1.8:1 (typ)
> 40 GHz to 67 GHz	< 2.0:1 (typ)
Leveling modes	Internal leveling, external detector leveling,
	millimeter source module, ALC off
External detector leveling	
Range	–0.2 mV to –0.5 V (nom) (–36 dBm to
	+4 dBm using Agilent 33330D/E detector)
Bandwidth	Selectable 0.1 to 100 kHz (nom)
	(Note: not intended for pulsed operation)
Maximum reverse power	1/2 Watt, 0 V _{DC}

Spectral purity

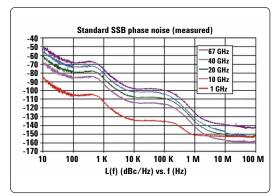
Harmonics ¹	(dBc at +10 dBm or maximum specified
	output power, whichever is lower)
< 10 MHz	–28 dBc (typical below 1 MHz)
10 MHz to 2 GHz	-28 dBc ²
10 MHz to 2 GHz (with Option 1EH filters on)	–55 dBc³
> 2 GHz to 20 GHz	–55 dBc
> 20 GHz to 40 GHz (Option 540)	–50 dBc (typ)
> 20 GHz to 67 GHz (Options 550 & 567)	–45 dBc (-50 dBc typical)
Harmonics (measured)	

1500 2000 1000 Carrier frequency (MHz)

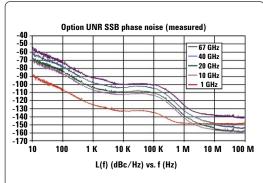
1. Specifications are typical for harmonics beyond specified frequency range (beyond 50 GHz for Option 567).

2. Typical below 250 MHz if Option 1EH is installed and the filters are off.

3. In ramp sweep mode (Option 007), harmonics are -28 dBc below 250 MHz.


Sub-harmonics ¹		(dBc at +10 dF	3m or maximum sp	pecified output
oub-nurmonics		power, whiche		Seemed Satpat
250 kHz to 10 GHz		None		
> 10 GHz to 20 GHz		<60 dBc		
> 20 GHz		< –50 dBc		
Non-harmonics ²			3m or maximum s	pecified output
			ver is lower, for of	
			Option UNR])	
Frequency		Spec	Typical	
250 kHz to 250 MHz		-65	-72 for >	10 kHz offsets
> 250 MHz to 1 GHz		-80		
> 1 to 2 GHz		-74	-82	
> 2 to 3.2 GHz		-68	-76	
> 3.2 to 10 GHz		-62	-70	
> 10 to 20 GHz		-56	-64	
> 20 to 40 GHz		-50	58	
> 40 GHz		_44	-52	
SSB phase noise (CV	V)	Offset from ca	rrier (dBc/Hz)	
Frequency		20 kHz	20 kHz (t	yp)
250 kHz to 250 MHz ³		-130	-134	
> 250 to 500 MHz ³		-134	-138	
> 500 MHz to 1 GHz ³		-130	-134	
> 1 to 2 GHz ³		-124	-128	
> 2 to 3.2 GHz		-120	-124	
> 3.2 to 10 GHz		-110	-113	
> 10 to 20 GHz		-104	-108	
> 20 to 40 GHz		-98	-102	
> 40 to 67 GHz		-92	-96	
Option UNR: Enhance	ed SSB phase n			
_		Offset from ca		
Frequency	100 Hz	1 kHz	10 kHz	100 kHz
	spec (typ)	spec (typ)	spec (typ)	spec (typ)
250 kHz to 250 MHz ³		-110 (-123)	-128 (-132)	-130 (-133)
> 250 to 500 MHz ³	-100 (-110)	-124 (-130)	-132 (-136)	-136 (-141)
> 500 MHz to 1 GHz ³	()	-118 (-126)	-130 (-135)	-130 (-135)
> 1 to 2 GHz ³	-88 (-98)	-112 (-120)	-124 (-129)	-124 (-129)
> 2 to 3.2 GHz > 3.2 to 10 GHz	-84 (-94)		-120 (-125)	-120 (-125)
> 10 to 20 GHz	74 (84) 68 (78)	-98 (-106) -92 (-100)	–110 (–115) –104 (–107)	–110 (–115) –104 (–109)
> 20 to 40 GHz			-104 (-107) -98 (-101)	
> 40 to 67 GHz	-62 (-72) -56 (-66)	-86 (-94) -80 (-88)	-98 (-101) -92 (-95)	-98 (-103) -92 (-97)
Residual FM	-30 (-00)	-00 (-00)	-32 (-33)	-52 (-57)
(rms, 50 Hz to 15 kHz	handwidth)			
CW mode	banawiatiij	< N x 6 Hz (typ	n)	
Option UNR		< N x 4 Hz (typ		
Ramp sweep mode		< N x 1 kHz (ty		
Broadband noise			10 dBm or maximun	n specified output
			ver is lower, for of	
> 2.4 to 20 GHz		< -148 dBc/Hz		
> 20 to 40 GHz		<-141 dBc/H		
> 40 GHz		<-135 dBc/Hz		

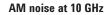
Sub-harmonics are defined as Carrier Freq / N).
 Specifications are typical for sub-harmonics beyond specified frequency range (beyond 50 GHz for Option 567).

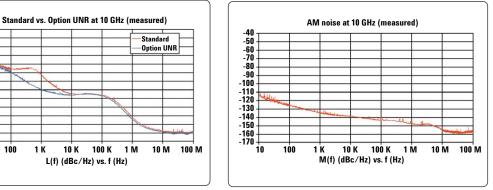

Specifications are typical for spurs beyond specified frequency range (beyond 50 GHz for Option 567). Specifications apply for CW mode, without modulation. In ramp sweep mode (Option 007), performance is typical for offsets > 1 MHz.

^{3.} Measurement at +10 dBm or maximum specified output power, whichever is less.

Standard phase noise

Option UNR phase noise




-40 -50 -60 -70 -80 -90 -100 -100 -110 -120 -130 -140 -150 -160

-170

10

100

1 K 10 K 100 K L(f) (dBc/Hz) vs. f (Hz)

Measured rms jitter¹

Standard				
Carrier	SONET/SDH	RMS jitter	Unit intervals	Time
frequency	data rates	bandwidth	(µUI)	(fs)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	26	170
622 MHz	622 MB/s	1 kHz to 5 MHz	25	41
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	77	31
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	232	23
39.812 GHz	39812 MB/s	40 kHz to 320 MHz	1203	30
Option UNR				
Carrier	SONET/SDH	RMS jitter	Unit intervals	Time
frequency	data rates	bandwidth	(μUI)	(fs)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	29	184
622 MHz	622 MB/s	1 kHz to 5 MHz	25	40
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	78	31
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	210	21
39.812 GHz	39812 MB/s	40 kHz to 320 MHz	750	19

^{1.} Calculated from phase noise performance in CW mode only at +10 dBm. For other frequencies, data rate, or bandwidths, please contact your sales representative.

Frequency modulation¹

(Option UNT)

Phase modulation⁵

(Option UNT)

Maximum deviation ²	Frequency		Maximu	ım deviation	
	250 kHz to 250) MHz	2 MHz		
	> 250 to 500 N	ЛНz	1 MHz		
	> 500 MHz to	1 GHz	2 MHz		
	> 1 GHz to 2 G		4 MHz		
	> 2 GHz to 3.2		8 MHz		
	> 3.2 GHz to 1		16 MHz		
	> 10 GHz to 2		32 MHz		
	> 20 GHz to 4		64 MHz		
	> 40 GHz to 6		128 MH	7	
Resolution		ion or 1 Hz, wh			
Deviation accuracy		V deviation + 2		groutor	
		v viations < N x			
Modulation frequency	response ³ (at 100 kHz o				
Path [coupling]					
	1 dB bandwid	th	3 dB ba	ndwidth (typ)	
FM path 1 [DC]	DC to 100 kHz		DC to 10) MHz	
FM path 2 [DC]	DC to 100 kHz		DC to 1	MHz	
FM path 1 [AC]	20 Hz to 100 k	Hz	5 Hz to 1	10 MHz	
FM path 2 [AC]	20 Hz to 100 k	Hz	5 Hz to 1	1 MHz	
DC FM ⁴ carrier offset		leviation + (N >			
Distortion	< 1% (1 kHz ra	ate, deviations	< N x 800	kHz)	
Sensitivity	±1 V _{peak} for in	dicated deviati	on		
	FM1 and FM2 are summed internally for composite		r composite		
Paths	FIVE AND FIVE	are summed in	modulation. Either path may be switched to any one of		
Paths					
Paths	modulation. Ei		be switche	ed to any one o	
ratns	modulation. Ei the modulatio	ither path may n sources: Ext1	be switche , Ext2, inte	ed to any one o ernal1, internal	
Patns	modulation. Ei the modulatio The FM2 path	ither path may n sources: Ext1 is limited to a	be switche , Ext2, inte maximum	ed to any one o ernal1, internal rate of 1 MHz.	
ratns	modulation. Ei the modulatio The FM2 path	ither path may n sources: Ext1	be switche , Ext2, inte maximum	ed to any one o ernal1, internal rate of 1 MHz.	
	modulation. Ei the modulatio The FM2 path The FM2 path	ither path may n sources: Ext1 is limited to a must be set to	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM	
ratns Maximum deviation ⁶	modulation. Ei the modulatio The FM2 path The FM2 path Frequency	ither path may n sources: Ext1 is limited to a must be set to Normal BV	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo	
	modulation. Ei the modulatio The FM2 path The FM2 path Frequency 250 kHz to 250 MHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path Frequency 250 kHz to 250 MHz > 250 to 500 MHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 20 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 2 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 20 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 2 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path The FM2 path 250 kHz to 250 MHz > 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad 80 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 8 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 8 rad 16 rad	
	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 10 GHz to 20 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad 320 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 8 rad 16 rad 32 rad	
Maximum deviation [®] Resolution	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 10 GHz to 20 GHz > 20 GHz to 40 GHz	ither path may n sources: Ext1 is limited to a must be set to Normal BW 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad 320 rad 640 rad 1280 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal: rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 8 rad 16 rad 32 rad 64 rad	
Maximum deviation [®] Resolution	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 10 GHz to 20 GHz > 20 GHz to 40 GHz > 40 GHz to 67 GHz 0.1% of set de	ither path may n sources: Ext1 is limited to a must be set to Normal BW 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad 320 rad 640 rad 1280 rad	be switche , Ext2, inte maximum a deviatio	ed to any one o ernal1, internal rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 8 rad 16 rad 32 rad 64 rad 128 rad	
Maximum deviation 6	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 10 GHz to 20 GHz > 20 GHz to 40 GHz > 40 GHz to 67 GHz 0.1% of set de	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad 320 rad 640 rad 1280 rad viation	be switche , Ext2, inte maximum a deviatio	ed to any one c ernal1, internal rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 8 rad 16 rad 32 rad 64 rad 128 rad	
Maximum deviation [®] Resolution	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 20 GHz > 20 GHz to 40 GHz > 40 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷	ither path may n sources: Ext1 is limited to a must be set to 20 rad 10 rad 20 rad 40 rad 320 rad 640 rad 320 rad 640 rad 1280 rad viation ation + 0.01 rad	be switche , Ext2, inte maximum a deviatio	ed to any one c ernal1, internal rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 8 rad 16 rad 32 rad 64 rad 128 rad	
Maximum deviation [®] Resolution Deviation accuracy Modulation frequency	modulation. Ei the modulatio The FM2 path The FM2 path Path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 20 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW m	ither path may n sources: Ext1 is limited to a must be set to 20 rad 10 rad 20 rad 40 rad 320 rad 640 rad 320 rad 640 rad 1280 rad viation ation + 0.01 rad	be switche , Ext2, inte maximum a deviatio V mode V mode dians (1 kF High BV	ed to any one o ernal1, internal rate of 1 MHz. n less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 2 rad 32 rad 64 rad 128 rad 128 rad 128 rad	
Maximum deviation [®] Resolution Deviation accuracy Modulation frequency Rates (3 dB BW)	modulation. Ei the modulatio The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW m DC to 100 kHz	ither path may n sources: Ext1 is limited to a must be set to 20 rad 10 rad 20 rad 40 rad 320 rad 640 rad 320 rad 640 rad 1280 rad viation ation + 0.01 rad	be switche , Ext2, inte maximum a deviatio V mode V mode dians (1 kH High BV DC to 1	ed to any one o ernal1, internal rate of 1 MHz. In less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 32 rad 64 rad 128 rad 128 rad 128 rad 128 rad 128 rad	
Maximum deviation [®] Resolution Deviation accuracy Modulation frequency	modulation. Ei the modulatio The FM2 path The FM2 path PM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW m DC to 100 kHz < 1 % (1 kHz r	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad 320 rad 640 rad 320 rad 640 rad 1280 rad viation ation + 0.01 rac node	be switche , Ext2, inte maximum a deviatio V mode V mode dians (1 kH High BV DC to 1 nonic Disto	ed to any one o ernal1, internal rate of 1 MHz. In less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 32 rad 64 rad 128 rad 128 rad 128 rad 128 rad 128 rad	
Maximum deviation ⁶ Resolution Deviation accuracy Modulation frequency Rates (3 dB BW) Distortion	modulation. Ei the modulatio The FM2 path The FM2 path PM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 20 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW n DC to 100 kHz < 1 % (1 kHz r dev < N x 80 r	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad 320 rad 640 rad 320 rad 640 rad 1280 rad viation ation + 0.01 rac node ate, Total Harm ad, normal BW	be switche , Ext2, inte maximum a deviatio V mode V mode V mode U mode U mode U mode U mode U mode U mode U mode	ed to any one c ernal1, internal rate of 1 MHz. In less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 2 rad 4 rad 32 rad 64 rad 128 rad 128 rad 128 rad 128 rad	
Maximum deviation ⁶ Resolution Deviation accuracy Modulation frequency Rates (3 dB BW) Distortion Sensitivity	modulation. Ei the modulatio The FM2 path The FM2 path Path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW n DC to 100 kHz < 1 % (1 kHz n dev < N x 80 n ±1 V _{peak} for in	ither path may n sources: Ext1 is limited to a must be set to Normal BV 20 rad 10 rad 20 rad 40 rad 320 rad 640 rad 320 rad 640 rad 1280 rad 1280 rad viation ation + 0.01 rac node	be switche , Ext2, inte maximum a deviatio V mode V mode V mode U mode	ed to any one o ernal1, internal rate of 1 MHz. In less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 2 rad 64 rad 128 rad 128 rad 128 rad 127 rate, normal V mode MHz (typ) ⁸ rtion (THD),	
Maximum deviation ⁶ Resolution Deviation accuracy Modulation frequency Rates (3 dB BW) Distortion	modulation. Ei the modulatio The FM2 path The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 20 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW n DC to 100 kHz < 1 % (1 kHz r dev < N x 80 r ±1 V _{peak} for in ΦM1 and ΦW	ither path may n sources: Ext1 is limited to a must be set to 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad 320 rad 640 rad 1280 rad 1280 rad viation ation + 0.01 rac node ate, Total Harm ad, normal BW dicated deviati 12 are summed	be switche , Ext2, inte maximum a deviatio V mode V mode dians (1 kH High BV DC to 1 nonic Disto ' mode) on internally	ed to any one o ernal1, internal rate of 1 MHz. In less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 2 rad 64 rad 16 rad 32 rad 64 rad 128 rad Iz rate, normal V mode MHz (typ) ⁸ rtion (THD), for composite	
Maximum deviation ⁶ Resolution Deviation accuracy Modulation frequency Rates (3 dB BW) Distortion Sensitivity	modulation. Ei the modulatio The FM2 path The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 20 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW n DC to 100 kHz < 1 % (1 kHz r dev < N x 80 r ±1 V _{peak} for in ΦM1 and ΦM modulation. Ei	ither path may n sources: Ext1 is limited to a must be set to 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad 320 rad 640 rad 1280 rad viation ation + 0.01 rad viation ate, Total Harm ad, normal BW dicated deviati 12 are summed ither path may	be switche , Ext2, inte maximum a deviatio V mode V mode dians (1 kF High BV DC to 1 onic Disto (mode) on internally be switche	ed to any one o ernal1, internal: rate of 1 MHz. In less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 2 rad 64 rad 16 rad 32 rad 64 rad 128 rad Iz rate, normal V mode MHz (typ) ⁸ rtion (THD), for composite ed to any one o	
Maximum deviation ⁶ Resolution Deviation accuracy Modulation frequency Rates (3 dB BW) Distortion Sensitivity	modulation. Ei the modulatio The FM2 path The FM2 path The FM2 path 250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 20 GHz to 20 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set de < ±5% of devi BW mode) response ⁷ Normal BW n DC to 100 kHz < 1 % (1 kHz r dev < N x 80 r ±1 V _{peak} for in ΦM1 and ΦM modulation. Ei the modulatio	ither path may n sources: Ext1 is limited to a must be set to 20 rad 10 rad 20 rad 40 rad 80 rad 160 rad 320 rad 640 rad 1280 rad 1280 rad viation ation + 0.01 rac node ate, Total Harm ad, normal BW dicated deviati 12 are summed	be switche , Ext2, inte maximum a deviatio V mode V mode V mode U mode High BV DC to 1 onic Disto (mode) on internally be switche , Ext2, inte	ed to any one o ernal1, internal rate of 1 MHz. In less than FM High BW mo 2 rad 1 rad 2 rad 4 rad 2 rad 4 rad 16 rad 32 rad 64 rad 128 rad 128 rad 128 rad 128 rad 1 rate, normal k mode MHz (typ) ⁸ rtion (THD), for composite ed to any one o ernal1, internal	

1. Above 50 GHz, FM is useable; however performance is not warranted.

2. Through any combination of path1, path2, or path1 + path2.

 Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 10 MHz (FM1 path), and 50 kHz to 1 MHz (FM2 path).

4. At the calibrated deviation and carrier frequency, within 5 °C of ambient temperature at time of user calibration.

- 5. Above 50 GHz, phase modulation is useable; however performance is not warranted.
- 6. Through any combination of path1, path2, or path1 + path2.

 Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 1 MHz (high BW mode).

8. Path 1 is useable to 4 MHz for external inputs less than 0.3 V peak.

Amplitude modulation¹

Amplitude modulation ¹	Depth	Linear mode	Exponential (log) mode	
(Option UNT)			(Downward modulation only)	
	Maximum			
(typ)	ALC on	> 90%	> 20 dB	
	ALC off or deep AM on ²	> 95%	> 40 dB ³	
	Settable	0 to 100 %	0 to 40 dB	
	Resolution	0.1%	0.01 dB	
	Accuracy (1 kHz rate)	< ±(6 % of setting + 1 %)	$< \pm (2\% \text{ of setting} + 0.2 \text{ dB})$	
	Ext sensitivity	±1 V _{peak} for indicated depth	-1 V for indicated depth	
	Rates (3 dB bandwidth, 30% depth	1)		
	DC Coupled	0 to 100 KHz		
	AC Coupled	10 Hz to 100 KHz (usable t	o 1 MHz)	
	Distortion			
	(1 kHz rate, linear mode, Total Harmonic Distortion)			
	30% AM	< 1.5%		
	60% AM	< 2%		
	Paths	AM1 and AM2 are summe	d internally for composite	
		modulation. Either path ma	ay be switched to any one of	
		the modulation sources: E	xt1, Ext2, internal1, internal2.	
.				
External modulation inputs	Modulation types	AM, FM, and ΦM		
(Ext1 & Ext2)	Input impedance	50 or 600 Ω (nom) switche	ed	
· · · · · · · · · · · · · · · · · · ·	High/low indicator			
(Option UNT)	(100 Hz to 10 MHz BW,	Activated when input leve	l error exceeds 3% (nom)	
	ac coupled inputs only)			

Internal modulation source

(Option UNT)

Dual function generators provides two independent sign	nals (internal1 and internal2) for	
use with AM_EM_MM_or LE Out		

Waveforms	Sine, square, positive ramp, negative ramp, triangle,	
	Gaussian noise, uniform noise, swept sine, dual sine ⁴	
Rate range		
Sine	0.5 Hz to 1 MHz	
Square, ramp, triangle	0.5 Hz to 100 kHz	
Resolution	0.5 Hz	
Accuracy	Same as timebase	
LF Out		
Output	Internal1 or internal2. Also provides monitoring of	
	internal1or internal2 when used for AM, FM, or Φ M.	
Amplitude	0 to 3 V _{peak} , (nom) into 50 Ω	
Output impedance	50 Ω (nom)	
Swept sine mode: (frequend	cy, phase continuous)	
Operating modes	Triggered or continuous sweeps	
Frequency range	1 Hz to 1 MHz	
Sweep rate	0.5 Hz to 100 kHz sweeps/s, equivalent to sweep times	
	10 us to 2 s	
Resolution	0.5 Hz (0.5 sweep/s)	

AM specifications are typical. For carrier frequencies below 2 MHz or above 50 GHz, AM is 1. useable but not warranted. Unless otherwise stated, specifications apply with ALC on, deep AM off, and envelope peaks within ALC operating range (-20 dBm to maximum specified power, excluding step-attenuator setting).

^{2.} For reduced distortion at high modulation depths, either level hold mode (ALC-off with power search) or deep AM mode should be used. With ALC on in deep AM mode, waveform peaks are controlled by ALC system, and the lower portion of the waveform (below -10 dBm nominal ALC level) is subject to sample-and-hold drift of approximately 0.25 dB/second.

^{3.} To achieve > 40 dB depth, less than -1 V external input may be required.

^{4.} Internal2 is not available when using swept sine or dual sine modes.

Pulse modulation ^{1, 2} (Option UNU)

500 MHz to 3.2 GHz	Above 3.2 GHz
80 dB (typ)	80 dB
100 ns (typ)	6 ns (typ)
2 us	1 us
0.5 us	0.15 us
10 Hz to 250 kHz	10 Hz to 500 kHz
dc to 1 MHz	dc to 3 MHz
±0.5 dB	±0.5 dB
±0.5 dB (typ)	±0.5 dB (typ)
±50 ns (typ)	±5 ns (typ)
< 200 mv (typ)	< 2 mv (typ)
50 ns (nom)	50 ns (nom)
270 ns (nom)	35 ns (nom)
< 10% (typ)	< 10% (typ)
+1 V _{peak} = RF On	+1 V _{peak} = RF On
50 Ω (nom)	50 Ω (nom)
	80 dB (typ) 100 ns (typ) 2 us 0.5 us 10 Hz to 250 kHz dc to 1 MHz ±0.5 dB ±0.5 dB (typ) ±50 ns (typ) < 200 mv (typ) 50 ns (nom) 270 ns (nom) < 10% (typ) +1 V _{peak} = RF On

Narrow pulse modulation 1.2

(Option UNW)

	10 MHz to 3.2 GHz	Above 3.2 GHz
On/Off ratio	80 dB	80 dB
Rise/Fall times (Tr, Tf)	10 ns (8 ns typical)	10 ns (6 ns typical)
Minimum pulse width		
Internally leveled	1 us	1 us
Level hold (ALC off with power search)	20 ns	20 ns
Repetition frequency		
Internally leveled	10 Hz to 500 kHz	10 Hz to 500 kHz
Level hold (ALC off with power search)	dc to 5 MHz	dc to 10 MHz
Level accuracy (relative to CW)		
Internally leveled	±0.5 dB	±0.5 dB (0.15 dB typical)
Level hold (ALC off with power search)	±1.3 dB (typ)	±0.5 dB (typ)

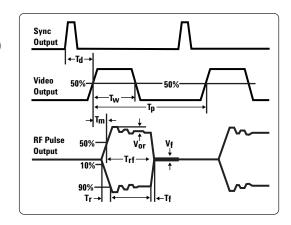
With ALC off, specs apply after the execution of power search. Specifications apply with Atten Hold Off (default mode for instruments with attenuator), or ALC level between –5 and +10 dBm or maximum specific power, whichever is lower. Above 50 GHz, pulse modulation is useable; however performance is not warranted.

^{2.} Power search is a calibration routine that improves level accuracy with ALC off. The instrument microprocessor momentarily closes the ALC loop to find the modulator drive setting necessary to make the quiescent RF level equal to an entered value, then opens the ALC loop while maintaining that modulator drive setting. When executing power search, RF power will be present for typically 10 to 50 ms; the step attenuator (Option 1E1) can be set to automatically switch to maximum attenuation to protect sensitive devices. Power search can be configured to operate either automatically or manually at the carrier frequency, or over a user-definable frequency range.

^{3.} With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.

	10 MHz to 3.2 GHz	Above 3.2 GHz
Width compression	±5 ns (typ)	±5 ns (typ)
(RF width relative to video out)		
Video feed-through ¹	< 125 mv (typ)	< 2 mv (typ)
Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)	45 ns (nom)	35 ns (nom)
Pulse overshoot	< 15% (typ)	< 10% (typ)
Input level	+1 V _{peak} = RF On	+1 V _{peak} = RF On
Input impedance	50 Ω (nom)	50 Ω (nom)

Free-run, triggered, triggered with delay,


Internal pulse generator

(Option UNU or UNW)

	doublet, and gated. Triggered with delay,
	doublet, and gated require external
	trigger source.
Period (PRI) (Tp)	70 ns to 42 s
	(Repetition frequency: 0.024 Hz to
	14.28 MHz)
Pulse width (Tw)	10 ns to 42 s
Delay (Td)	
Free-run mode	0 to ±42 s
Triggered with delay and doublet modes	75 ns to 42s with ±10 ns jitter
Resolution	10 ns (width, delay, and PRI)

Td Video delay (variable) Tw Video pulse width (variable) Tp Pulse period (variable) Tm RF delay Trf RF pulse width Tf RF pulse fall time Tr RF pulse rise time Vor Pulse overshoot Vf Video feedthrough

Modes

All modulation types (FM, AM, Φ M, and pulse modulations) may be simultaneously enabled except: FM with Φ M, and linear AM with exponential AM. AM, FM, and Φ M can sum simultaneous inputs from any two sources (Ext1, Ext2, internal1, or internal2). Any given source (Ext1, Ext2, internal1, or internal2) may be routed to only one activated modulation type.

Simultaneous modulation

1. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.

Remote programming

Interfaces	GPIB (IEEE-488.2,1987) with listen and talk, RS-232, and 10BaseT LAN interface.
Control languages	SCPI version 1997.0. Completely code compatable
control languages	with previous PSG signal generators. Also will
	emulate most applicable Agilent 836xxB, Agilent
	837xxB, and Agilent 8340/41B commands,
	providing general compatibility with ATE systems
	which include these signal generators.
IEEE-488 functions	SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E2.
ISO compliant	This family of signal generators is manufactured
	in an ISO-9001 registered facility in concurrence
	with Agilent commitment to quality.
Agilent IO Libraries	Agilent's IO Library Suite ships with the E8257D
	to help you quickly establish an error-free
	connection between your PC and instruments –
	regardless of the vendor. It provides robust
	instrument control and works with the software
	development environment you choose.
Power requirements	90 to 132 VAC 47 to 64 Hz or 365 to 435 Hz; or
	195 to 267 VAC 47 to 64 Hz, (automatically selected)
	< 250 W typical, 300 W maximum.
Operating temperature range	0 to 55 °C
Storage temperature range ¹	-40 to 70 °C
Shock and vibration	
Operating random vibration	5 to 500 Hz, 0.21 g rms
Survival swept sine vibration	5 to 500 Hz, 0.5 g
Survival random vibration	5 to 500 Hz, 2.09 g rms
Functional shock (half-sine, 30 g, 11 ms)	-
and bench drop test	class 3 equipment.
EMC	Meets the conducted and radiated interference
	and immunity requirements of IEC/EN 61326-1.
	Meets radiated emission requirements of CISPR
	Pub 11/1997 Group 1 class A.
Storage registers	Memory is shared by instrument states, user
	data files, sweep list files, and waveform
	sequences. Depending on the number and size of
	these files, up to 800 storage registers and 10
	register sequences are available.
Security	Display blanking
	Memory clearing functions
	(see Application Note <i>Security of Agilent Signal</i>
	Congrators lesuge and Solutions literature
	Generators Issues and Solutions, literature
Compatibility	number 5989-1091EN)
Compatibility	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML
Compatibility	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar
	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters
	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules
	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules (including microcircuits) in a preset condition.
	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within
	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes"
Self-test	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test.
Self-test Weight	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test. < 22 kg (48 lb.) net, < 30 kg (68 lb.) shipping
Compatibility Self-test Weight Dimensions	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test. < 22 kg (48 lb.) net, < 30 kg (68 lb.) shipping 178 mm H x 426 mm W x 515 mm D
Self-test Weight	number 5989-1091EN) Agilent 83550 Series Millimeter Heads and OML millimeter source modules, Agilent 8757D scalar network analyzers, Agilent EPM Series power meters Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test. < 22 kg (48 lb.) net, < 30 kg (68 lb.) shipping

General specifications

^{1.} Storage below –20 °C instrument states may be lost.

Input/Output Descriptions

Front panel connectors

(All connectors are BNC female unless otherwise noted.)¹

RF output	Output impedance 50 Ω (nom)
Option 520	Precision APC-3.5 male, or Type-N with Option 1ED
Options 540 and 550	Precision 2.4 mm male; plus 2.4 – 2.4 mm and
•	2.4 – 2.9 mm female adaptors
Option 567	Precision 1.85 mm male; plus 1.85 – 1.85 mm and
	2.4 – 2.9 mm female adaptors
ALC input	Used for negative external detector leveling. Nominal
	input impedance 120 k Ω , damage level ±15 V.
LF output	Outputs the internally generated LF source. Nominal
	output impedance 50 Ω .
External input 1	Drives either AM, FM, or Φ M. Nominal input impedance
	50 or 600 Ω , damage levels are 5 Vrms and 10 Vpeak.
External input 2	Drives either AM, FM, or Φ M. Nominal input impedance
	50 or 600 Ω , damage levels are 5 V _{rms} and 10 V _{peak} .
Pulse/trigger gate input	Accepts input signal for external fast pulse modulation
	Also accepts external trigger pulse input for internal
	pulse modulation. Nominal impedance 50 Ω . Damage
	levels are 5 V _{rms} and 10 V _{peak} .
Pulse video out	Outputs a signal that follows the RF output in all pulse
	modes. TTL-level compatible, nominal source
	impedance 50 Ω .
Pulse sync out	Outputs a synchronizing pulse, nominally 50 ns width,
	during internal and triggered pulse modulation.
	TTL-level compatible, nominal source impedance 50 Ω

Rear panel connectors

(all connectors are BNC female unless otherwise noted.)¹

Auxiliary interface (dual mode)	Used for RS-232 serial communication and for
	master/slave source synchronization.
	(9-pin subminiature female connector).
GPIB	Allows communication with compatible devices
LAN	Allows 10BaseT LAN communication
10 MHz input	Accepts an external reference (timebase) input (at 1, 2, 2.5, 5, 10 MHz for standard and 10 MHz only for Option UNR)
	Nominal input impedance 50 Ω
	Damage levels > +10 dBm
10 MHz output	Outputs internal or external reference signal. Nominal output impedance 50 Ω. Nominal output power +8 dBm.
Sweep output (dual mode)	Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width.
	When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1 us pulses (nom) across a ramp (analog) sweep. Number of pulses can be set form 101 to 1601 by remote control from the 8757D.
	Output impedance: < 1 Ω (nom), can drive 2000 Ω .

^{1.} Digital inputs and output are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

Stop sweep In/Out	Open-collector, TTL-compatible input/output. In ramp sweep operation, provides low level (nominally 0 V) during sweep retrace and bandcross intervals, and high level during the forward portion of the sweep. Sweep will stop when grounded externally, sweep will resume when allowed to go high.
Trigger output (dual mode)	Outputs a TTL signal. High at start of dwell, or when waiting for point trigger; low when dwell is over or point trigger is received. In ramp sweep mode, provides 1601 equally-spaced 1us pulses (nom) across a ramp sweep. When using LF Out, provides 2 us pulse at start of LF sweep.
Trigger input	Accepts TTL signal for triggering point-to-point in manual sweep mode, or to trigger start of LF sweep. Damage levels \geq +10 V or \leq -4 V.
Source module interface	Provides power and leveling connections to the millimeter source modules.
Source settled	Provides an output trigger that indicates when the signal generator has settled to a new frequency or power level. High indicates source not settled, Low indicates source settled.
Z-axis Blank/Markers	During ramp sweep, supplies +5 V (nom) level during retrace and bandswitch intervals. Supplies –5 V (nom) level when the RF frequency is at a marker frequency.
10 MHz EFC	 (Option UNR only) Accepts an external dc voltage, ranging from –5 V to +5 V, for electronic frequency control (EFC) of the internal 10 MHz reference oscillator. This voltage inversely tunes the oscillator about its center frequency approximately –0.0025 ppm/V. The nominal input impedance is greater than 1 MΩ.

Options, Accessories, and Related Products

Model/option	Description
E8257D-520	Frequency range from 250 kHz to 20 GHz
E8257D-540	Frequency range from 250 kHz to 40 GHz
E8257D-550	Frequency range from 250 kHz to 50 GHz
E8257D-567	Frequency range from 250 kHz to 67 GHz
E8257D-007	Analog ramp sweep
E8257D-UNR	Enhanced phase noise performance
E8257D-UNT	AM, FM, phase modulation, and LF output
E8257D-UNU	Pulse modulation
E8257D-UNW	Narrow pulse modulation
E8257D-1EA	High output power
E8257D-1E1	Step attenuator
E8257D-1ED	Type-N (f) RF output connector (Option 520 only)
E8257D-1EH	Improved harmonics below 2 GHz
E8257D-1EM	Moves all front panel connectors to the rear panel
E8257D-1CN	Front handle kit
E8257D-1CM	Rackmount flange kit
E8257D-1CP	Rackmount flange and front handle kit
E8257D-UK6	Commercial calibration certificate and test data
E8257D-CD1	CD-ROM containing the English documentation set
E8257D-ABA	Printed copy of the English documentation set
E8257D-0BW	Printed copy of the assembly-level service guide
8120-8806	Master/slave interface cable
9211-2656	Transit case
9211-7481	Transit case with wheels

Web Resources

For additional information, visit: www.agilent.com/find/psg

For more information about renting, leasing or financing Agilent's latest technology, visit: www.agilent.com/find/buy/alternatives

For more accessory information, visit: www.agilent.com/find/accessories

For additional description of Agilent's IO Libraries Suite features and installation requirements, please go to: www.agilent.com/find/iosuite/database

Related Agilent Literature

PSG Self Guided Demo Literature number 5988-2414EN

E8257D PSG Signal Generators Configuration Guide, Literature number 5989-1325EN

E8267D PSG Vector Signal Generator Data Sheet, Literature number 5989-0697EN

E8267D PSG Vector Signal Generator Configuration Guide, Literature number 5989-1326EN

Millimeter Wave Source Modules Product Note, Literature number 5988-2567EN

PSG Two-Tone and Multitone Application Note -1410, Literature number 5988-7689EN

Security of Agilent Signal Generators Issues and Solutions, Literature number 5989-1091EN

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity

Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit **www.agilent.com/find/connectivity** for more information.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

Europe: (tel) 31 20 547 2111 Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840 Korea: (tel) (080) 769 0800 (fax) (080)769 0900 Latin America: (tel) (305) 269 7500 Taiwan: (tel) 0800 047 866 (fax) 0800 286 331 Other Asia Pacific Countries: (tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2004 Printed in USA, December 16, 2004 5989-0698EN

